Table 33.1, 33.2 Differential group functioning DGF pairwise

This Table identifies Differential Group Functioning DGF interactions between classification-groups of persons (identified by DIF=, referencing the person labels) and classification-groups of items (identified by DPF=, referencing the item labels) using the column selection rules. Differential average classification-group performance (DGF) is powerful when looking for latent classes among the persons. Differential bundle functioning (DBF) is powerful when looking for local dependence among the items. For more details, see Table 30 (DIF) and Table 31 (DPF). A graphing technique can be used to display DIF item characteristic curves for non-uniform DIF. DGf can be used for investigating Differential Skills Functioning (DSF).

 

Table

33.1 DGF report (paired person classes on each item class)

33.2 DGF report (paired item classes on each person class)

33.3 DGF report (list of person classes within item class)

33.4 DGF report (list of item classes within person class)

33.7 DGF  Item group-Person group profiles

33.8 DGF  Item group-Person group profiles

 

We put a code in the person label of every person indicating whether the person belongs to the Control Group, "C", or the Treatment Group, "T". The column for this code is the Differential Item Functioning DIF= column. Then, if we want a report for every item, it is a DIF analysis, Winsteps Table 30.

 

If we want to group items, then we put a code in the item label of every item which indicates the item group to which the item belongs. The column for this code is the Differential Person Functioning, DPF= column. Then, if we want a report for every person, it is a DPF analysis, Winsteps Table 31.

 

If we want to do "person group" with "item group" . Then this is DGF (Differential Group Functioning). Person DIF= column and Item DPF= column, Winsteps Table 33.

 

DGF analysis: the log-odds model for an individual person in the group and item in the group is:

log(Pni1/Pni0) = Bgn - Dhi - Mgh

where

Bgn is the overall estimate from the main analysis of the ability of person n (who is in group DIF g)

Dhi is the overall estimate from the main analysis of the difficulty of item i (which is in DPF group h)

Mgh is the interaction (bias, DGF) for person group g on item group h. This is estimated from all persons in group g combined with all items in group h.

 

The DGF dialog displays when Table 33 is called from the Output Tables or Plots menus.

 

Table 33.1

 

DGF CLASS-LEVEL BIAS/INTERACTIONS FOR DIF=@GENDER AND DPF=$S1W1

----------------------------------------------------------------------------------------------

| PERSON   DGF    DGF   DGF  PERSON   DGF    DGF   DGF    DGF    JOINT  Rasch-Welch    ITEM  |

| CLASS  SCORE   SIZE  S.E.  CLASS  SCORE   SIZE  S.E. CONTRAST  S.E.   t  d.f. Prob.  CLASS |

|--------------------------------------------------------------------------------------------|

| F        .00    .06   .28  M        .01   -.16   .27      .22   .39   .57 452 .5708   1    |

| F        .01   -.18   .50  M        .00    .00   .61     -.18   .79  -.23 101 .8208   2    |

| F        .04   -.50   .83  M       -.04    .76  1.04    -1.26  1.33  -.95  32 .3484   3    |

| F       -.01    .00< 3.00  M       -.01    .00< 2.40      .00  3.84   .00  32 1.0000  4    |

| M        .01   -.16   .27  F        .00    .06   .28     -.22   .39  -.57 452 .5708   1    |

| M        .00    .00   .61  F        .01   -.18   .50      .18   .79   .23 101 .8208   2    |

| M       -.04    .76  1.04  F        .04   -.50   .83     1.26  1.33   .95  32 .3484   3    |

| M       -.01    .00< 2.40  F       -.01    .00< 3.00      .00  3.84   .00  32 1.0000  4    |

----------------------------------------------------------------------------------------------

 

The most important numbers in Table 33.1: The DGF CONTRAST is the difference in difficulty of the item between the two groups. This should be at least 0.5 logits for DGF to be noticeable. "Prob." shows the probability of observing this amount of contrast by chance, when there is no systematic item bias effect. For statistically significance DGF on an item, Prob. ≤ .05.

 

Table 33.2

 

DGF CLASS-LEVEL BIAS/INTERACTIONS FOR DIF=@GENDER AND DPF=$S1W1

---------------------------------------------------------------------------------------------

| ITEM    DGF    DGF   DGF  ITEM    DGF    DGF   DGF    DGF    JOINT  Rasch-Welch    PERSON |

| CLASS SCORE   SIZE  S.E.  CLASS SCORE   SIZE  S.E. CONTRAST  S.E.   t  d.f. Prob.  CLASS  |

|-------------------------------------------------------------------------------------------|

| 1       .00    .06   .28  2       .01   -.18   .50      .24   .57   .42 119 .6774   F     |

| 1       .00    .06   .28  3       .04   -.50   .83      .56   .87   .64  30 .5261   F     |

| 1       .01   -.16   .27  2       .00    .00   .61     -.16   .67  -.24 100 .8097   M     |

| 1       .01   -.16   .27  3      -.04    .76  1.04     -.92  1.07  -.86  25 .3973   M     |

| 2       .01   -.18   .50  1       .00    .06   .28     -.24   .57  -.42 119 .6774   F     |

| 2       .01   -.18   .50  3       .04   -.50   .83      .32   .97   .33  39 .7420   F     |

 

This Table contrasts, for each item class, the size and significance of the Differential Item Functioning for pairs of person classifications.

 

DGF class specification defines the columns used to identify DGF classifications, using DIF= and DPF=, see the selection rules.

 

Reading across the Table 33.1 columns:

PERSON CLASS identifies the CLASS of persons specified with DIF=, e.g., the first here is CLASS is "F".

DGF estimates with the  the iterative-logit (Rasch-Welch) method:

DGF SCORE is the average response score-point difference between the observed and the expected scores for this PERSON CLASS on this ITEM CLASS. Higher scores mean locally higher ability or locally lower difficulty relative to each groups performance overall.

DGF SIZE is the differential difficulty of this item (scaled by USCALE=) for this class, with all else held constant, e.g., .07 is the relative difficulty for Kid Class F on Item Class1. The more difficult, the higher the DGF measure.
-.52> reports that this measure corresponds to an extreme maximum person-class score. EXTRSCORE= controls extreme score estimate.
1.97< reports that this measure corresponds to an extreme minimum person-class score. EXTRSCORE= controls extreme score estimate.
-6.91E reports that this measure corresponds to an item with an extreme score, which cannot exhibit DIF

DGF S.E. is the standard error of the DGF SIZE (scaled by USCALE=).

PERSON CLASS identifies the CLASS of persons, e.g., the second CLASS is "M".

DGF SCORE is the average response score-point difference between the observed and the expected scores for this PERSON CLASS on this ITEM CLASS.

DGF SIZE is the differential difficulty of this item for this class, with all else held constant, e.g., -.15 is the relative difficulty for Kid Class M on Item Class1. The more difficult, the higher the DGF measure.

DGF S.E. is the standard error of the second DGF SIZE.

DGF CONTRAST is the difference between the two DGF SIZE, i.e., size of the DGF across the two classifications of persons, e.g., .07 - -.15 = .23 (usually in logits). A positive DGF contrast indicates that the item is more difficult for the first, left-hand-listed CLASS. See details in Table 33.3.

JOINT S.E. is the standard error of the DGF CONTRAST = sqrt(first DIF S.E.² + second DIF S.E.²), e.g., .38 = sqrt(.27² + .27²)

t gives the DGF significance as a Student's t-statistic = DGF CONTRAST / JOINT S.E. The t-test is a two-sided test for the difference between two means (i.e., the estimates) based on the standard error of the means (i.e., the standard error of the estimates). The null hypothesis is that the two estimates are the same, except for measurement error.

d.f. is the joint degrees of freedom by the Welch method.

INF means "the degrees of freedom are so large they can be treated as infinite", i.e., the reported t-value is a unit normal deviate.

Prob. is the two-sided probability of Student's t. See t-statistics.

ITEM CLASS is the item classification specified by DPF=. Here the first ITEM CLASS is "1"

 

Each line in the Table is repeated with the PERSON CLASSes in reversed order.


Help for Winsteps Rasch Measurement and Rasch Analysis Software: www.winsteps.com. Author: John Michael Linacre

Facets Rasch measurement software. Buy for $149. & site licenses. Freeware student/evaluation Minifac download
Winsteps Rasch measurement software. Buy for $149. & site licenses. Freeware student/evaluation Ministep download

Rasch Books and Publications
Invariant Measurement: Using Rasch Models in the Social, Behavioral, and Health Sciences, 2nd Edn, 2024 George Engelhard, Jr. & Jue Wang Applying the Rasch Model (Winsteps, Facets) 4th Ed., Bond, Yan, Heene Advances in Rasch Analyses in the Human Sciences (Winsteps, Facets) 1st Ed., Boone, Staver Advances in Applications of Rasch Measurement in Science Education, X. Liu & W. J. Boone Rasch Analysis in the Human Sciences (Winsteps) Boone, Staver, Yale
Introduction to Many-Facet Rasch Measurement (Facets), Thomas Eckes Statistical Analyses for Language Testers (Facets), Rita Green Invariant Measurement with Raters and Rating Scales: Rasch Models for Rater-Mediated Assessments (Facets), George Engelhard, Jr. & Stefanie Wind Aplicação do Modelo de Rasch (Português), de Bond, Trevor G., Fox, Christine M Appliquer le modèle de Rasch: Défis et pistes de solution (Winsteps) E. Dionne, S. Béland
Exploring Rating Scale Functioning for Survey Research (R, Facets), Stefanie Wind Rasch Measurement: Applications, Khine Winsteps Tutorials - free
Facets Tutorials - free
Many-Facet Rasch Measurement (Facets) - free, J.M. Linacre Fairness, Justice and Language Assessment (Winsteps, Facets), McNamara, Knoch, Fan
Other Rasch-Related Resources: Rasch Measurement YouTube Channel
Rasch Measurement Transactions & Rasch Measurement research papers - free An Introduction to the Rasch Model with Examples in R (eRm, etc.), Debelak, Strobl, Zeigenfuse Rasch Measurement Theory Analysis in R, Wind, Hua Applying the Rasch Model in Social Sciences Using R, Lamprianou El modelo métrico de Rasch: Fundamentación, implementación e interpretación de la medida en ciencias sociales (Spanish Edition), Manuel González-Montesinos M.
Rasch Models: Foundations, Recent Developments, and Applications, Fischer & Molenaar Probabilistic Models for Some Intelligence and Attainment Tests, Georg Rasch Rasch Models for Measurement, David Andrich Constructing Measures, Mark Wilson Best Test Design - free, Wright & Stone
Rating Scale Analysis - free, Wright & Masters
Virtual Standard Setting: Setting Cut Scores, Charalambos Kollias Diseño de Mejores Pruebas - free, Spanish Best Test Design A Course in Rasch Measurement Theory, Andrich, Marais Rasch Models in Health, Christensen, Kreiner, Mesba Multivariate and Mixture Distribution Rasch Models, von Davier, Carstensen
As an Amazon Associate I earn from qualifying purchases. This does not change what you pay.

facebook Forum: Rasch Measurement Forum to discuss any Rasch-related topic

To receive News Emails about Winsteps and Facets by subscribing to the Winsteps.com email list,
enter your email address here:

I want to Subscribe: & click below
I want to Unsubscribe: & click below

Please set your SPAM filter to accept emails from Winsteps.com
The Winsteps.com email list is only used to email information about Winsteps, Facets and associated Rasch Measurement activities. Your email address is not shared with third-parties. Every email sent from the list includes the option to unsubscribe.

Questions, Suggestions? Want to update Winsteps or Facets? Please email Mike Linacre, author of Winsteps mike@winsteps.com


State-of-the-art : single-user and site licenses : free student/evaluation versions : download immediately : instructional PDFs : user forum : assistance by email : bugs fixed fast : free update eligibility : backwards compatible : money back if not satisfied
 
Rasch, Winsteps, Facets online Tutorials


 

 

 

Our current URL is www.winsteps.com

Winsteps® is a registered trademark