Table 33.3, 33.4 Differential group functioning DGF list

Table 33 supports the investigation of item bias, Differential Group Functioning (DGF), i.e., interactions between classes of items and types of persons. Specify DIF= for person classifying indicators in person labels, and DPF= for item classifying indicators in the item labels.

 

Example output:

You want to examine item bias (DIF) between Females and Males in Exam1.txt. You need a column in your Winsteps person label that has two (or more) demographic codes, say "F" for female and "M" for male (or "0" and "1" if you like dummy variables) in column 9.

 

Table 33.1 is best for pairwise comparisons, e.g., Females vs. Males. Use Table 33.1 if you have two classes of persons, and Table 33.2 if you have two classes of items.

 

Table 33.3 or Table 33.4 are best for multiple comparisons, e.g., regions against the national average. Table 33.3 sorts by item class then person class. Table 33.4 sorts by person class then item class.

 

Table 33.3

 

DGF CLASS-LEVEL BIAS/INTERACTIONS FOR DIF=@GENDER AND DPF=$S1W1

-----------------------------------------------------------------------------------

| PERSON     OBSERVATIONS    BASELINE       DGF     DGF   DGF   DGF         ITEM  |

| CLASS     COUNT AVERAGE EXPECT           SCORE    SIZE  S.E.   t   Prob.  CLASS |

|---------------------------------------------------------------------------------|

| F           234     .46    .46             .00     .06   .28  -.22 .8294  1     |

| F            54     .85    .84             .01    -.18   .50   .36 .7224  2     |

| F            18     .89    .85             .04    -.50   .83   .60 .5541  3     |

| F            18     .00    .01            -.01     .00< 3.00   .00 1.000  4     |

| M           221     .51    .50             .01    -.16   .27   .59 .5552  1     |

| M            51     .86    .86             .00     .00   .61   .00 1.000  2     |

| M            17     .82    .87            -.04     .76  1.04  -.74 .4734  3     |

| M            17     .00    .01            -.01     .00< 2.40   .00 1.000  4     |

-----------------------------------------------------------------------------------

 

Table 33.4

 

-----------------------------------------------------------------------------------

| ITEM      OBSERVATIONS    BASELINE       DGF     DGF   DGF   DGF         PERSON |

| CLASS    COUNT AVERAGE EXPECT           SCORE    SIZE  S.E.   t   Prob.  CLASS  |

|---------------------------------------------------------------------------------|

| 1          234     .46    .46             .00     .06   .28  -.22 .8294  F      |

| 1          221     .51    .50             .01    -.16   .27   .59 .5552  M      |

| 2           54     .85    .84             .01    -.18   .50   .36 .7224  F      |

| 2           51     .86    .86             .00     .00   .61   .00 1.000  M      |

| 3           18     .89    .85             .04    -.50   .83   .60 .5541  F      |

| 3           17     .82    .87            -.04     .76  1.04  -.74 .4734  M      |

| 4           18     .00    .01            -.01     .00< 3.00   .00 1.000  F      |

| 4           17     .00    .01            -.01     .00< 2.40   .00 1.000  M      |

-----------------------------------------------------------------------------------

 

This displays a list of the local difficulty/ability estimates underlying the paired DGF analysis. These can be plotted directly from the Plots menu.

 

DGF class specification identifies the person-label columns containing DIF classifications, with DIF= set to @GENDER using the selection rules. The item-label columns for item classes are specified by DPF=.

 

Table 33.3. The DGF effects are shown ordered by Person CLASS within item class.

Table 33.4. The DGF effects are shown ordered by Person CLASS within Item CLASS.

 

KID CLASS identifies the CLASS of persons. KID is specified with PERSON=, e.g., the first CLASS is "F"

OBSERVATIONS are what are seen in the data

COUNT is the number of observations of the classification used for DIF estimation, e.g., 18 F persons responded to TAP item 1.

AVERAGE is the average observation on the classification, e.g., 0.89 is the proportion-correct-value of item 4 for F persons.
COUNT * AVERAGE = total score of person class on the item

BASELINE is the prediction without DGF

EXPECT is the expected value of the average observation when there is no DIF, e.g., 0.92 is the expected proportion-correct-value for F without DGF.

DGF: Differential Group Functioning

DGF SCORE is the difference between the observed and the expected average observations, e.g., 0.92 - 0.89= -0.03

DGF SIZE is the relative difficulty for this class, e.g., person CLASS F has a relative difficulty of .07 for item CLASS 1-. ">" (maximum score), "<" (minimum score) indicate measures corresponding to extreme scores.

DGF S.E. is the approximate standard error of the difference, e.g., 0.89 logits

DGF t is an approximate Student's t-statistic test, estimated as DGF SIZE divided by the DGF S.E. with COUNT-2 degrees of freedom excluding observations for extreme persons or items (shown by TOTALSCORE=No).

Prob. is the two-sided probability of Student's t. See t-statistics.

ITEM CLASS identifies the CLASS of items.


Help for Winsteps Rasch Measurement and Rasch Analysis Software: www.winsteps.com. Author: John Michael Linacre

Facets Rasch measurement software. Buy for $149. & site licenses. Freeware student/evaluation Minifac download
Winsteps Rasch measurement software. Buy for $149. & site licenses. Freeware student/evaluation Ministep download

Rasch Books and Publications
Invariant Measurement: Using Rasch Models in the Social, Behavioral, and Health Sciences, 2nd Edn, 2024 George Engelhard, Jr. & Jue Wang Applying the Rasch Model (Winsteps, Facets) 4th Ed., Bond, Yan, Heene Advances in Rasch Analyses in the Human Sciences (Winsteps, Facets) 1st Ed., Boone, Staver Advances in Applications of Rasch Measurement in Science Education, X. Liu & W. J. Boone Rasch Analysis in the Human Sciences (Winsteps) Boone, Staver, Yale
Introduction to Many-Facet Rasch Measurement (Facets), Thomas Eckes Statistical Analyses for Language Testers (Facets), Rita Green Invariant Measurement with Raters and Rating Scales: Rasch Models for Rater-Mediated Assessments (Facets), George Engelhard, Jr. & Stefanie Wind Aplicação do Modelo de Rasch (Português), de Bond, Trevor G., Fox, Christine M Appliquer le modèle de Rasch: Défis et pistes de solution (Winsteps) E. Dionne, S. Béland
Exploring Rating Scale Functioning for Survey Research (R, Facets), Stefanie Wind Rasch Measurement: Applications, Khine Winsteps Tutorials - free
Facets Tutorials - free
Many-Facet Rasch Measurement (Facets) - free, J.M. Linacre Fairness, Justice and Language Assessment (Winsteps, Facets), McNamara, Knoch, Fan
Other Rasch-Related Resources: Rasch Measurement YouTube Channel
Rasch Measurement Transactions & Rasch Measurement research papers - free An Introduction to the Rasch Model with Examples in R (eRm, etc.), Debelak, Strobl, Zeigenfuse Rasch Measurement Theory Analysis in R, Wind, Hua Applying the Rasch Model in Social Sciences Using R, Lamprianou El modelo métrico de Rasch: Fundamentación, implementación e interpretación de la medida en ciencias sociales (Spanish Edition), Manuel González-Montesinos M.
Rasch Models: Foundations, Recent Developments, and Applications, Fischer & Molenaar Probabilistic Models for Some Intelligence and Attainment Tests, Georg Rasch Rasch Models for Measurement, David Andrich Constructing Measures, Mark Wilson Best Test Design - free, Wright & Stone
Rating Scale Analysis - free, Wright & Masters
Virtual Standard Setting: Setting Cut Scores, Charalambos Kollias Diseño de Mejores Pruebas - free, Spanish Best Test Design A Course in Rasch Measurement Theory, Andrich, Marais Rasch Models in Health, Christensen, Kreiner, Mesba Multivariate and Mixture Distribution Rasch Models, von Davier, Carstensen
As an Amazon Associate I earn from qualifying purchases. This does not change what you pay.

facebook Forum: Rasch Measurement Forum to discuss any Rasch-related topic

To receive News Emails about Winsteps and Facets by subscribing to the Winsteps.com email list,
enter your email address here:

I want to Subscribe: & click below
I want to Unsubscribe: & click below

Please set your SPAM filter to accept emails from Winsteps.com
The Winsteps.com email list is only used to email information about Winsteps, Facets and associated Rasch Measurement activities. Your email address is not shared with third-parties. Every email sent from the list includes the option to unsubscribe.

Questions, Suggestions? Want to update Winsteps or Facets? Please email Mike Linacre, author of Winsteps mike@winsteps.com


State-of-the-art : single-user and site licenses : free student/evaluation versions : download immediately : instructional PDFs : user forum : assistance by email : bugs fixed fast : free update eligibility : backwards compatible : money back if not satisfied
 
Rasch, Winsteps, Facets online Tutorials


 

 
Coming Rasch-related Events
Jan. 17 - Feb. 21, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
Feb. - June, 2025 On-line course: Introduction to Classical Test and Rasch Measurement Theories (D. Andrich, I. Marais, RUMM2030), University of Western Australia
Feb. - June, 2025 On-line course: Advanced Course in Rasch Measurement Theory (D. Andrich, I. Marais, RUMM2030), University of Western Australia
Apr. 21 - 22, 2025, Mon.-Tue. International Objective Measurement Workshop (IOMW) - Boulder, CO, www.iomw.net
May 16 - June 20, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
June 20 - July 18, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Further Topics (E. Smith, Facets), www.statistics.com
Oct. 3 - Nov. 7, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com

 

 

Our current URL is www.winsteps.com

Winsteps® is a registered trademark