Table 24.1, 24.11, ... Principal components/contrast plots of person loadings

Please do not interpret this as a usual factor analysis. These plots show contrasts between opposing factors, identified as "A,B,.." and "a,b,...", not loadings on one factor. For more discussion, see dimensionality and contrasts.

 

Quick summary:

(a) the X-axis is the measurement axis. So we are not concerned about quadrants, we are concerned about vertical differences. The Table 24 plots show contrasts between types of persons: those at the top vs. those at the bottom.

 

(b) "How much" is important. See the Variance Table explained in Table 24.0. Important differences have eigenvalues greater than 2.0.

 

(c) If the difference is important, it suggests that we divide the dataset into two pieces: the persons in the top half of the plot and the persons in the bottom half. Perform two separate analyses and cross-plot and correlate the item calibrations. We will then see for which items the differences are important. Usually, for a carefully designed instrument, it is such a small segment that we decide it is not worth thinking of the test as measuring two dimensions. Table 24.4 also helps us think about this.

 

1. Put a code into the person label to indicate the subset to which the item belongs.

2a. Use PSELECT= for each subset code, and produce a person measure (IFILE=). Cross-plot the item calibrations.

or

2b. Do a Differential Item Functioning (DIF=) analysis based on the subset code. Table 30.1 will give you an inter-person-subset t-test for each item.

 

Alternatively, transpose the dataset, and investigate persons as though they are items.

 

Table 24.0 Variance components scree plot for persons

Table 24.1, 24.11 Principal components plots of person loadings

Table 24.2, 24.12 Person Principal components analysis/contrast of residuals

Table 24.3, 24.13 Person contrast by items

Table 24.4, 24.14 Person contrast loadings sorted by measure

Table 24.5, 24.15 Person contrast loadings sorted by entry number

Table 24.99 Largest residual correlations for persons

 


 

These plots show the contrasts by plotting the unstandardized "raw" loading on each component against the person measure. The contrast shows persons with different residual patterns. A random pattern with few high loadings is expected.

 

The horizontal axis is the Rasch dimension. This has been extracted from the data prior to the analysis of residuals.

 

Letters "A,B,C,..." and "a,b,c,..." identify persons with the most opposed loadings on the first contrast in the residuals. On subsequent contrasts, the items retain their first contrast identifying letters. When there are 9 persons or less, the person number is displayed.

 

In the residuals, each person is modeled to contribute one unit of randomness. Thus, there are as many residual variance units as there are persons. For comparison, the amount of variance explained by the measures is approximated as units of that same size.

 

In the Figure below , the first contrast in the standardized residuals separates the persons into 3 clusters. To identify the persons, see Table 24.3. In this example, the dimension is noticeable, with strength of around 18 out of 74 persons. This is in the residual variance, i.e., in the part of the observations unexplained by the measurement model. But, hopefully, most of the variance in the observations has been explained by the model. The part of that explained variance attributable to the persons is shown in variance units locally-rescaled to accord with the residual variances. In this example, the variance explained by the person measures is equivalent to 30 persons. Consequently, the secondary dimension (or whatever) in the persons is noticeable.

 

For persons:

 

     Table of STANDARDIZED RESIDUAL variance in Eigenvalue units = KID information units

                                           Eigenvalue   Observed   Expected

Total raw variance in observations     =     150.8183 100.0%         100.0%

  Raw variance explained by measures   =      76.8183  50.9%          50.7%

    Raw variance explained by persons  =      30.5375  20.2%          20.2%

    Raw Variance explained by items    =      46.2809  30.7%          30.6%

  Raw unexplained variance (total)     =      74.0000  49.1% 100.0%   49.3%

    Unexplned variance in 1st contrast =      18.2333  12.1%  24.6%

 

       STANDARDIZED RESIDUAL CONTRAST 1 PLOT

 

      -4     -3     -2     -1      0      1      2      3      4      5

      -+------+------+------+------+------+------+------+------+------+- COUNT  CLUSTER

   .9 +                   A        |                                   + 1      1

      |                           B|                                   | 1      1

   .8 +                       C D  |                                   + 2      1

      |                            | E                                 | 1      1

   .7 +                   I  G    H|    F                              + 4      1

      |                            KMJL                                | 4      1

   .6 +                            |                                   +

      |                            | N                                 | 1      1

C  .5 +                 P          |      O                            + 2      1

O     |                            |                                   |

N  .4 +                           Q|                                   + 1      1

T     |                            S        R                          | 2      2

R  .3 +                     T      |                                   + 1      2

A     |                            |    U                              | 1      2

S  .2 +                           V|                                   + 1      2

T     |                            | W                                 | 1      2

   .1 +                            |Y X                                + 2      2

1     |                           1|  1    Z                           | 3      2

   .0 +----------------------------|---1--------------1----------------+ 2      2

L     |                            |   1      1  1                     | 3      2

O -.1 +                       1    |  1      1                         + 3      2

A     |                            |1                                  | 1      2

D -.2 +                            |  1    1                           + 2      2

I     |                            |1 1                                | 2      2

N -.3 +                            |  1  2                             + 3      3

G     |                            |  2      1                         | 3      3

  -.4 +                            |x    1   y     z                   + 4      3

      |                            |      v  w                         | 2      3

  -.5 +                            | u q  o   s r  p                 t + 7      3

      |                            |       ln             m            | 3      3

  -.6 +                            |        k    ji                    + 3      3

      |                            |                        h          | 1      3

  -.7 +                            |             g      f      e       + 3      3

      |                            |            c b d                  | 3      3

  -.8 +                            |                a                  + 1      3

      -+------+------+------+------+------+------+------+------+------+-

      -4     -3     -2     -1      0      1      2      3      4      5

                                 KID MEASURE

 COUNT:                 1 2 112 1 5346832333342 23222 1 1 1 1  1     1

 

ACT          1    1  1   11 111 21  21221  1   21 1 1

               T         S         M         S         T

%TILE        0      10   20  30 40 50 70  80   90  99

 

The plot shows a contrast in the residuals for PERSONS. Each letter is a person up to a maximum of 52 persons, A-Z and a-z. For persons 53-74, "1" means that there is one person at that location on the plot. "2" means that there are two persons, etc.


Help for Winsteps Rasch Measurement and Rasch Analysis Software: www.winsteps.com. Author: John Michael Linacre

Facets Rasch measurement software. Buy for $149. & site licenses. Freeware student/evaluation Minifac download
Winsteps Rasch measurement software. Buy for $149. & site licenses. Freeware student/evaluation Ministep download

Rasch Books and Publications
Invariant Measurement: Using Rasch Models in the Social, Behavioral, and Health Sciences, 2nd Edn, 2024 George Engelhard, Jr. & Jue Wang Applying the Rasch Model (Winsteps, Facets) 4th Ed., Bond, Yan, Heene Advances in Rasch Analyses in the Human Sciences (Winsteps, Facets) 1st Ed., Boone, Staver Advances in Applications of Rasch Measurement in Science Education, X. Liu & W. J. Boone Rasch Analysis in the Human Sciences (Winsteps) Boone, Staver, Yale
Introduction to Many-Facet Rasch Measurement (Facets), Thomas Eckes Statistical Analyses for Language Testers (Facets), Rita Green Invariant Measurement with Raters and Rating Scales: Rasch Models for Rater-Mediated Assessments (Facets), George Engelhard, Jr. & Stefanie Wind Aplicação do Modelo de Rasch (Português), de Bond, Trevor G., Fox, Christine M Appliquer le modèle de Rasch: Défis et pistes de solution (Winsteps) E. Dionne, S. Béland
Exploring Rating Scale Functioning for Survey Research (R, Facets), Stefanie Wind Rasch Measurement: Applications, Khine Winsteps Tutorials - free
Facets Tutorials - free
Many-Facet Rasch Measurement (Facets) - free, J.M. Linacre Fairness, Justice and Language Assessment (Winsteps, Facets), McNamara, Knoch, Fan
Other Rasch-Related Resources: Rasch Measurement YouTube Channel
Rasch Measurement Transactions & Rasch Measurement research papers - free An Introduction to the Rasch Model with Examples in R (eRm, etc.), Debelak, Strobl, Zeigenfuse Rasch Measurement Theory Analysis in R, Wind, Hua Applying the Rasch Model in Social Sciences Using R, Lamprianou El modelo métrico de Rasch: Fundamentación, implementación e interpretación de la medida en ciencias sociales (Spanish Edition), Manuel González-Montesinos M.
Rasch Models: Foundations, Recent Developments, and Applications, Fischer & Molenaar Probabilistic Models for Some Intelligence and Attainment Tests, Georg Rasch Rasch Models for Measurement, David Andrich Constructing Measures, Mark Wilson Best Test Design - free, Wright & Stone
Rating Scale Analysis - free, Wright & Masters
Virtual Standard Setting: Setting Cut Scores, Charalambos Kollias Diseño de Mejores Pruebas - free, Spanish Best Test Design A Course in Rasch Measurement Theory, Andrich, Marais Rasch Models in Health, Christensen, Kreiner, Mesba Multivariate and Mixture Distribution Rasch Models, von Davier, Carstensen
As an Amazon Associate I earn from qualifying purchases. This does not change what you pay.

facebook Forum: Rasch Measurement Forum to discuss any Rasch-related topic

To receive News Emails about Winsteps and Facets by subscribing to the Winsteps.com email list,
enter your email address here:

I want to Subscribe: & click below
I want to Unsubscribe: & click below

Please set your SPAM filter to accept emails from Winsteps.com
The Winsteps.com email list is only used to email information about Winsteps, Facets and associated Rasch Measurement activities. Your email address is not shared with third-parties. Every email sent from the list includes the option to unsubscribe.

Questions, Suggestions? Want to update Winsteps or Facets? Please email Mike Linacre, author of Winsteps mike@winsteps.com


State-of-the-art : single-user and site licenses : free student/evaluation versions : download immediately : instructional PDFs : user forum : assistance by email : bugs fixed fast : free update eligibility : backwards compatible : money back if not satisfied
 
Rasch, Winsteps, Facets online Tutorials


 

 

 

Our current URL is www.winsteps.com

Winsteps® is a registered trademark