Scatterplot: Compare statistics plot

From the Plots menu, this enables the simple graphical or tabular comparison of equivalent statistics from two runs using a scatterplot (xy plot) produced by Excel. For most versions of Excel, the maximum number of items or persons that can be plotted is 32,000.

 

 

To automatically produce this Excel scatterplot of two sets of measures or fits statistics:

Select Compare Statistics on the Plots pull-down menu. If this dialog box is too big for your screen see Display too big.

 

 

Measures, standard errors, fit statistics indicate which statistics are to be compared.

 

Display with columns generates a line-printer graphical-columns plot. It is displayed as Table 34.

The first column is the Outfit Mean-Square of this analysis.

The third column is the Outfit Mean-Square of the Right File (exam12lopf.txt in this case)

The second column is the difference.

The fourth column is the identification, according to the current analysis.

Persons or items are matched and listed by Entry number.

 

Table 34.1

+-----------------------------------------------------------------------------+

|      PERSON       | Outfit MnSq Difference  |  exam12lopf.txt   | File Compa|

|0     1           3|-2          0           2|0     1           3| NUM  LABEL|

|-------------------+-------------------------+-------------------+-----------|

|      .   *        |      *     .            |   *  .            |  1  21101 |

|      .       *    |         *  .            |      .     *      |  2  21170 |

|  *   .            |            .*           |   *  .            |  3  21174 |

....

|     *.            |            *            |     *.            | 35  22693 |

+-----------------------------------------------------------------------------+

 

Display with Excel scatterplot initiates a graphical scatterplot plot. If the statistics being compared are both measures, then a 95% confidence interval is shown. This plot can be edited with all Excel tools.

 


 

Comparing with files

 

 

One or both sets of statistics can be in a IFILE= or PFILE= file (red arrow). Since these files can have different formats, please check that the selected field number matches the correct field in your file by clicking on the Display button (blue arrow). This displays the file. Count across the fields to your selected statistic. If your field number differs from the standard field number, please provide the correct details for your field in the selection box (orange box).

 

If two files are cross-plotted, please enter the Label field number in one of the files (either of the green arrows). Click on Display for one one of the files, and count across the fields to the Label field.

 


 

There are several decisions to make:

1. Do you want to plot person (row) or item (column) statistics?

2. Which statistic for the x-axis?

3. Which statistic for the y-axis?

4. Do you want to use the statistic from this analysis or from the PFILE= or IFILE= of another analysis?

5. Do you want to display in the statistics as Columns in a Table or as an Excel scatterplot or both?

 

If you are using the statistic from a PFILE= or IFILE= and Winsteps selects the wrong column, then identify the correct column using the "Statistic field number" area.

 

When two measures are compared, then their standard errors are used to construct confidence bands when "Plot confidence bands" is checked:

 

 

Here the item calibrations in the current analysis are being compared with the item calibrations in file IFILE=SFIF.txt from another analysis. This is the columnar output:

 

TABLE 34.1 An MCQ Test: administration was Comput ZOU630WS.TXT Apr 21  2:21 2006

INPUT: 30 STUDENTS  69 TOPICS  REPORTED: 30 STUDENTS  69 TOPICS  2 CATS     3.60.2

--------------------------------------------------------------------------------

+----------------------------------------------------------------------------------------------------+

|     Measures      |       Differences        |     Measures      | Comparison                      |

|                   |                          |     SFIF.txt      |                                 |

|-4                1|-2                       5|-3                2| NUM TOPIC                       |

|-------------------+--------------------------+-------------------+---------------------------------|

|   *          .    |       .         *        |          *.       |  1  nl01  Month                 |

|              .  * |  *    .                  |         * .       |  2  nl02  Sign                  |

|    *         .    |       .          *       |           .*      |  3  nl03  Phone number          |

|  *           .    |       .                * |           .    *  |  4  nl04  Ticket                |

|    *         .    |       .                 *|           .      *|  5  nl05  building              |

|*             .    |       .              *   |           .*      |  6  nm01  student ticket        |

|        *     .    |       .        *         |           .  *    |  7  nm02  menu                  |

|       *      .    |       .           *      |           .   *   |  8  nm03  sweater               |

|        *     .    |       .        *         |           . *     |  9  nm04  Forbidden City        |

|   *          .    |       .      *           |      *    .       | 10  nm05  public place          |

|       *      .    |       .   *              |        *  .       | 11  nm06  post office           |

|   *          .    |       .    *             |     *     .       | 12  nm07  sign on wall          |

|          *   .    |       *                  |       *   .       | 13  nh01  supermarket           |

|         *    .    |       .      *           |           .*      | 14  nh02  advertisement         |

|              .*   |    *  .                  |         * .       | 15  nh03  vending machine       |

|        *     .    |       .       *          |           .*      | 16  nh04  outside store         |

|              *    |       *                  |           *       | 17  nh05  stairway              |

|        *     .    |    *  .                  | *         .       | 18  nh06  gas station           |

|          *   .    |    *  .                  |   *       .       | 19  nh07  Taipei                |

|         *    .    |       .         *        |           .    *  | 20  nh08  window at post office |

|              *    |     * .                  |        *  .       | 21  nh09  weather forecast      |

|          *   .    |       .   *              |           *       | 22  nh10  section of newspaper  |

|         *    .    |       .           *      |           .     * | 23  nh11  exchange rate         |

|             *.    |       *                  |          *.       | 24  il01  open                  |

|            * .    |       .   *              |           .*      | 25  il02  vending machine       |

+----------------------------------------------------------------------------------------------------+

 

and the plotted output:

 

We are selecting only the first 4 characters of the item label, e.g., "nl01" and plotting only the Label:

 

1. Plots with confidence bands:

 

 

The points are plotted by their labels by Excel. The curved lines are the approximate 95% two-sided confidence bands (smoothed across all the points). They are not straight because the standard errors of the points differ. In this plot called "Empirical" (red arrow), the dotted line is the empirical equivalence line, the linear regression line for y-values on x-values. Right-click on a line to reformat or remove it.

 

 

A line parallel to the identity line is shown on the "Identity" plot (blue arrow) by selecting the tab on the bottom of the Excel screen. This line is parallel to the standard identity line (of slope 1) which goes through the origin of the two axes. This parallel-identity line goes through the mean of the two sets of measures (vertical and horizontal).

 

 

The plotted points are in the Excel Worksheet (green arrow). You can edit the data points and make any other changes you want to the plots.

Cell and Column Descriptions for Scatterplots of Measures with Confidence Bands

Cell

Description

A1

Scatterplot

B1

TITLE=

D1

Date and time

F1

CI= (Confidence Interval is)

G1

1.96 (normal deviate for 95% 2-sided confidence bands)

H1

68%=1.00, 90%=1.65, 95%=1.96, 99%=2.58 (Typical normal deviates for 2-sided confidence bands)

B22 (or similar), B23

Mean of Measure 1 in Column B and its population S.D.

D22 (or similar), D23

Mean of Measure 2 in Column D and its population S.D.

Column

Meaning

Formula for Row B

A

Entry

Entry number of Person or Item

B

Measure 1

Measure on y-axis

C

S.E. 1

Standard Error of Measure in column B

D

Measure 2

Measure on y-axis

E

S.E. 2

Standard Error of Measure in column D

F

PERSON or ITEM

Person or Item Label

G

C.I. - Identity (for Identity-line Confidence Band)

=SQRT(C3^2+E3^2)*G1*0.5

H

Upper x - Identity (for upper Confidence Band on Identity-line plot)

=((B22+B3+D3-D22)/2-G3)

I

Upper y - Identity

=((D22+B3+D3-B22)/2+G3)

J

Lower x - Identity (for lower Confidence Band on Identity-line plot)

=((B22+B3+D3-D22)/2+G3)

K

Lower y - Identity

=((D22+B3+D3-B22)/2-G3)

L

C.I. - Empirical (for Empirical-line Confidence Band)

=SQRT( (C3/B23)^2+ (E3/D23)^2)*G1*0.5

M

Upper x - Empirical (for upper Confidence Band on Empirical-line plot)

=(B22+((((B3-B22)/(2*B23))+((D3-D22)/(2*D23))-L3)*B23))

N

Upper y - Empirical

=(D22+((((B3-B22)/(2*B23))+((D3-D22)/(2*D23))+L3)*D23))

O

Lower x - Empirical

=(B22+((((B3-B22)/(2*B23))+((D3-D22)/(2*D23))+L3)*B23))

P

Lower y - Empirical

=(D22+((((B3-B22)/(2*B23))+((D3-D22)/(2*D23))-L3)*D23))

Q

t-statistic (of difference between Measures relative to their means)

=((B3-B22+D22-D3)/SQRT(C3^2+E3^2))

 

The relationship between the variables is summarized in the lower cells.

Empirical slope = Correlation between x-values and y-values

Intercept = intersection of the line with  empirical slope through the point: mean(x-values), mean(y-values)

Predicted y-value = intercept with y-axis + x-value * empirical slope

Predicted x-value = intercept with x-axis + y-value / empirical slope

Disattenuated correlation approximates the "true" correlation without measurement error.

Disattenuated correlation = Correlation / sqrt (Reliability(x-values) * Reliability(y-values))

 

In Row 1, the worksheet allows for user-adjustable confidence bands.

 

2. Plots without confidence bands

 

The plot can be edited with the full functionality of Excel.

 

The Worksheet shows the correlation of the points on the two axes.

 


Help for Winsteps Rasch Measurement and Rasch Analysis Software: www.winsteps.com. Author: John Michael Linacre

Facets Rasch measurement software. Buy for $149. & site licenses. Freeware student/evaluation Minifac download
Winsteps Rasch measurement software. Buy for $149. & site licenses. Freeware student/evaluation Ministep download

Rasch Books and Publications
Invariant Measurement: Using Rasch Models in the Social, Behavioral, and Health Sciences, 2nd Edn, 2024 George Engelhard, Jr. & Jue Wang Applying the Rasch Model (Winsteps, Facets) 4th Ed., Bond, Yan, Heene Advances in Rasch Analyses in the Human Sciences (Winsteps, Facets) 1st Ed., Boone, Staver Advances in Applications of Rasch Measurement in Science Education, X. Liu & W. J. Boone Rasch Analysis in the Human Sciences (Winsteps) Boone, Staver, Yale
Introduction to Many-Facet Rasch Measurement (Facets), Thomas Eckes Statistical Analyses for Language Testers (Facets), Rita Green Invariant Measurement with Raters and Rating Scales: Rasch Models for Rater-Mediated Assessments (Facets), George Engelhard, Jr. & Stefanie Wind Aplicação do Modelo de Rasch (Português), de Bond, Trevor G., Fox, Christine M Appliquer le modèle de Rasch: Défis et pistes de solution (Winsteps) E. Dionne, S. Béland
Exploring Rating Scale Functioning for Survey Research (R, Facets), Stefanie Wind Rasch Measurement: Applications, Khine Winsteps Tutorials - free
Facets Tutorials - free
Many-Facet Rasch Measurement (Facets) - free, J.M. Linacre Fairness, Justice and Language Assessment (Winsteps, Facets), McNamara, Knoch, Fan
Other Rasch-Related Resources: Rasch Measurement YouTube Channel
Rasch Measurement Transactions & Rasch Measurement research papers - free An Introduction to the Rasch Model with Examples in R (eRm, etc.), Debelak, Strobl, Zeigenfuse Rasch Measurement Theory Analysis in R, Wind, Hua Applying the Rasch Model in Social Sciences Using R, Lamprianou El modelo métrico de Rasch: Fundamentación, implementación e interpretación de la medida en ciencias sociales (Spanish Edition), Manuel González-Montesinos M.
Rasch Models: Foundations, Recent Developments, and Applications, Fischer & Molenaar Probabilistic Models for Some Intelligence and Attainment Tests, Georg Rasch Rasch Models for Measurement, David Andrich Constructing Measures, Mark Wilson Best Test Design - free, Wright & Stone
Rating Scale Analysis - free, Wright & Masters
Virtual Standard Setting: Setting Cut Scores, Charalambos Kollias Diseño de Mejores Pruebas - free, Spanish Best Test Design A Course in Rasch Measurement Theory, Andrich, Marais Rasch Models in Health, Christensen, Kreiner, Mesba Multivariate and Mixture Distribution Rasch Models, von Davier, Carstensen
As an Amazon Associate I earn from qualifying purchases. This does not change what you pay.

facebook Forum: Rasch Measurement Forum to discuss any Rasch-related topic

To receive News Emails about Winsteps and Facets by subscribing to the Winsteps.com email list,
enter your email address here:

I want to Subscribe: & click below
I want to Unsubscribe: & click below

Please set your SPAM filter to accept emails from Winsteps.com
The Winsteps.com email list is only used to email information about Winsteps, Facets and associated Rasch Measurement activities. Your email address is not shared with third-parties. Every email sent from the list includes the option to unsubscribe.

Questions, Suggestions? Want to update Winsteps or Facets? Please email Mike Linacre, author of Winsteps mike@winsteps.com


State-of-the-art : single-user and site licenses : free student/evaluation versions : download immediately : instructional PDFs : user forum : assistance by email : bugs fixed fast : free update eligibility : backwards compatible : money back if not satisfied
 
Rasch, Winsteps, Facets online Tutorials


 

 
Coming Rasch-related Events
Jan. 17 - Feb. 21, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
Feb. - June, 2025 On-line course: Introduction to Classical Test and Rasch Measurement Theories (D. Andrich, I. Marais, RUMM2030), University of Western Australia
Feb. - June, 2025 On-line course: Advanced Course in Rasch Measurement Theory (D. Andrich, I. Marais, RUMM2030), University of Western Australia
Apr. 21 - 22, 2025, Mon.-Tue. International Objective Measurement Workshop (IOMW) - Boulder, CO, www.iomw.net
May 16 - June 20, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
June 20 - July 18, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Further Topics (E. Smith, Facets), www.statistics.com
Oct. 3 - Nov. 7, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com

 

 

Our current URL is www.winsteps.com

Winsteps® is a registered trademark