Table 2 Polytomies: Most probable, expected, cumulative, structure, average measures

(controlled by T2SELECT=, MRANGE=, CATREF=)

 

Table 2 for multiple-choice items.

 

Each plot answers a different question:

What category is most likely? The maximum probability (mode) plot.

What is the average or expected category value? The expected score (mean) plot.

What part of the variable corresponds to the category? The cumulative probability (median) plot.

 

The numeric information for these plots is in ISFILE=

 


 

Which Table should be used for a standard setting procedure?

 

Most standard setting is based on "average" or "frequency" considerations. For instance,

 

"If we observed 1000 candidates whose measures are known to be exactly at the pass-fail point, ...

 

..., we would expect their average score to be the pass-fail score." If this is how you think, then the Table you want is Table 2.2 (matches Table 12.5)

 

..., we would expect 50% to pass and 50% to fail the pass-fail score." If this is how you think, then the Table you want is Table 2.3 (matches 12.6)

 

..., we would expect more to be in the criterion pass-fail category of each item than any other category." If this is how you think, then the Table you want is Table 2.1 (no matching 12.)

 

"Our current sample is definitive, ...

 

..., we would expect the next sample to behave in exactly the same way this sample did." If this is how you think, then the Table you want is Table 2.5 (or Table 2.6, if the responses have been rescored.)

 

..., we would expect the next sample to behave the way this sample should have behaved, if this sample had conformed to the Rasch model." If this is how you think, then the Table you want is Table 2.7.

 


 

The left-side of this table lists the items in descending order of measure. Anchored items are indicated by an * between the sequence number and name. A particular category can be used as the reference for sorting the items by specifying the CATREF= variable.

 

Across the bottom is the logit (or user-rescaled) variable with the distribution of the person measures shown beneath it. An "M" marker represents the location of the mean person measure. "S" markers are placed one standard deviation away from the mean. "T" markers are placed two standard deviations away. An "M" inside a plot indicates the measure corresponding to missing data.

 

To produce all subtables of Table 2, request Table 2.0

 


 

Table 2.1 & Table 2.11: The "Most Probable Response" Table, selected with CURVES=001, answers the question "which category is a person of a particular measure most likely to choose?" This is the most likely category with which the persons of logit (or user-rescaled) measure shown below would respond to the item shown on the left. The area to the extreme left is all "0"; the area to the extreme right is at the top category. Each category number is shown to the left of its modal area. If a category is not shown, it is never a most likely response. An item with an extreme, perfect (maximum possible) or zero (minimum possible), score is not strictly estimable, and is omitted here. Blank lines are used to help approximate the placement of the items on the latent variable.

 

This table presents in one picture the results of this analysis in a form suitable for inference. We can predict for people of any particular measure what responses they would probably make. "M" depicts an "average" person. The left "T" a low performer. The right "T" a high performer. Look straight up from those letters to read off the expected response profiles.

 

Table 2.1 to 2.7 reports with observed categories, i.e., those in the CODES= statement: (illustrated by an Observed Category).

Table 2.11 to 2.17 report with scored categories, i.e., after IVALUE=, RESCORE=, KEY1=, etc., but only if different from Table 2.1 to 2.7: (by Category Score).

 

Most Probable Response: Mode  (Between "0" and "1" is "0", etc.) (illustrated by an Observed Category)

-6       -4        -2         0         2         4         6

|---------+---------+---------+---------+---------+---------|  NUM   ACT

0                                     1       2             2    5  Find bottles and cans

|                                                           | deliberate space

0                                    1       2              2   23  Watch a rat

|                                                           |

0                                  1       2                2   20  Watch bugs

0                                  1       2                2    4  Watch grass change

0                                 1        2                2    8  Look in sidewalk cracks

|                                                           |

0         1        2                                        2   18  Go on picnic

|---------+---------+---------+---------+---------+---------|  NUM   ACT

-6       -4        -2         0         2         4         6

 

                               1

                      12 2 2117083563422342 111 1 1   1     1  KID

                     T      S      M      S     T

                      0    10 30 50 70 80 90               99  PERCENTILE     

 

 

When there are disordered Andrich thresholds, some categories are never most probable:

 

-4    -3     -2     -1      0      1      2      3      4                

|------+------+------+------+------+------+------+------|  NUM   ITEM    

0             2        4         6        8             8    1   disorder

 


 

Table 2.2 & Table 2.12: In the "Expected Score" Table, the standard output (or selected with CURVES=010) answers the question "what is the average rating that we expect to observer for persons of a particular measure?" This rating information is expressed in terms of expected scores (with ":" at the half-point thresholds). Extreme scores are located at expected scores .25 score points away from the extremes. This plot also indicates the operational range of each item.

 

Expected Score: Mean  (Rasch-score-point threshold, ":" indicates Rasch-half-point threshold) (illustrated by an Observed Category)

-6       -4        -2         0         2         4         6

|---------+---------+---------+---------+---------+---------|  NUM   ACT

0                               0   :     1     :   2       2    5  FIND BOTTLES AND CANS

0                              0   :     1     :   2        2   23  WATCH A RAT

0                            0   :     1     :    2         2   20  WATCH BUGS

          Operational range: ^--------------------^

....

0        0    :     1     :   2                             2   12  GO TO MUSEUM

0      0    :     1     :   2                               2   19  GO TO ZOO

0   0   :     1     :    2                                  2   18  GO ON PICNIC

|---------+---------+---------+---------+---------+---------|  NUM   ACT

-6       -4        -2         0         2         4         6        

 

In this example of a 5 category rating scale, the operation range of the top item is indicated in red.

 

-5       -3        -1         1         3         5         7

|---------+---------+---------+---------+---------+---------|  NUM   ITEM

1                        1  :   2  : 3 :  4    :   5        5   13  M. STAIRS

|---------+---------+---------+---------+---------+---------|  NUM   ITEM

-5       -3        -1         1         3         5         7

 


 

Table 2.3 & Table 2.13: The "Cumulative Probability" Table: Rasch-Thurstonian thresholds, selected with CURVES=001, answers the question "whereabouts in the category ordering is a person of a particular measure located?" This information is expressed in terms of median cumulative probabilities (the point at which the probability of scoring in or above the category is .5).

 

50% Cumulative Probability: Median (equal-cumulative-probability Rasch-Thurstonian thresholds) (illustrated by an Observed Category)

-6       -4        -2         0         2         4         6

|---------+---------+---------+---------+---------+---------|  NUM   ACT

0                                    1         2            2    5  Find bottles and cans

|                                                           |

0                                   1         2             2   23  Watch a rat

|                                                           |

0                                 1         2               2   20  Watch bugs

0                                 1         2               2    4  Watch grass change

0                                1         2                2    8  Look in sidewalk cracks

|                                                           |

0        1         2                                        2   18  Go on picnic

|---------+---------+---------+---------+---------+---------|  NUM   ACT

-6       -4        -2         0         2         4         6

 


 

Table 2.4 & Table 2.14 show Rasch structure calibrations: Rasch-Andrich thresholds (step parameters, step measures, step difficulties, rating (or partial credit) scale calibrations). These are the relationships between adjacent categories, and correspond to the points where adjacent category probability curves cross, i.e., are equally probable of being observed according to a Rasch model. There are always one less thresholds than categories.

 

Andrich Thresholds (Rasch model parameters: equal-adjacent-probability structure measures) (illustrated by an Observed Category)

-6       -4        -2         0         2         4         6

|---------+---------+---------+---------+---------+---------|  NUM   ACT

|                                     1       2             |    5  Find bottles and cans

|                                                           |

|                                    1       2              |   23  Watch a rat

|                                                           |

|                                  1       2                |   20  Watch bugs

|                                 1        2                |    4  Watch grass change

|                                 1        2                |    8  Look in sidewalk cracks

|                                                           |

|         1        2                                        |   18  Go on picnic

|---------+---------+---------+---------+---------+---------|  NUM   ACT

-6       -4        -2         0         2         4         6

 


 

Table 2.5 & Table 2.15 plot the observed average person measures for each scored category. It reflects how this sample used these categories. The plotted values cannot fall outside the range of the sample.

 

Observed Average Measures for KID (scored) (illustrated by an Observed Category)

-2     -1       0       1       2       3       4       5

|-------+-------+-------+-------+-------+-------+-------|  NUM   ACT

|                       000102                          |    5  FIND BOTTLES AND CANS

|                                                       |

|                       000102                          |   23  WATCH A RAT

|                                                       |

|                   00  01         02                   |   20  WATCH BUGS

|                 00    01               02             |    4  WATCH GRASS CHANGE

|                   0001                02              |    8  LOOK IN SIDEWALK CRACKS

|-------+-------+-------+-------+-------+-------+-------|  NUM   ACT

-2     -1       0       1       2       3       4       5

 

   1 2  11 2 114346533233332222 322 2 1 1 1  1  1      11  PUPILS

    T        S         M         S         T

 


 

Table 2.6 & Table 2.16 plot the observed average person measures for each observed category. It reflects how this sample used these categories. The plotted values cannot fall outside the range of the sample. "m" in the plot indicates the average measure of those for whom their observation is missing on this item. This Table is shown first from the Diagnosis pull-down menu.

 

Observed Average Measures for KID (unscored) (by Observed Category)

-2     -1       0       1       2       3       4       5

|-------+-------+-------+-------+-------+-------+-------|  NUM   ACT

|                       000102                          |    5  FIND BOTTLES AND CANS

|                                                       |

|                       000102    m                     |   23  WATCH A RAT

|                                                       |

|                   00  01         02                   |   20  WATCH BUGS

|                 00    01               02             |    4  WATCH GRASS CHANGE

|                   0001                02              |    8  LOOK IN SIDEWALK CRACKS

|-------+-------+-------+-------+-------+-------+-------|  NUM   ACT

-2     -1       0       1       2       3       4       5

  Code for unidentified missing data: m

 

   1 2  11 2 114346533233332222 322 2 1 1 1  1  1      11  PUPILS

    T        S         M         S         T

 


 

Table 2.7 & Table 2.17 plot the expected average person measures for each category score. It reflects how this sample were expected to use these categories. The plotted values cannot fall outside the range of the sample. This Table applies the empirical person distribution to Table 2.2.

 

Expected Average Measures for KID (scored) (illustrated by an Observed Category)

-2     -1       0       1       2       3       4       5

|-------+-------+-------+-------+-------+-------+-------|  NUM   ACT

|                  00      01            02             |    5  FIND BOTTLES AND CANS

|                                                       |

|                  00     01            02              |   23  WATCH A RAT

|                                                       |

|                 00     01           02                |   20  WATCH BUGS

|                 00     01          02                 |    4  WATCH GRASS CHANGE

|                 00     01          02                 |    8  LOOK IN SIDEWALK CRACKS

|-------+-------+-------+-------+-------+-------+-------|  NUM   ACT

-2     -1       0       1       2       3       4       5

 

   1 2  11 2 114346533233332222 322 2 1 1 1  1  1      11  PUPILS

    T        S         M         S         T


Help for Winsteps Rasch Measurement and Rasch Analysis Software: www.winsteps.com. Author: John Michael Linacre

Facets Rasch measurement software. Buy for $149. & site licenses. Freeware student/evaluation Minifac download
Winsteps Rasch measurement software. Buy for $149. & site licenses. Freeware student/evaluation Ministep download

Rasch Books and Publications
Invariant Measurement: Using Rasch Models in the Social, Behavioral, and Health Sciences, 2nd Edn, 2024 George Engelhard, Jr. & Jue Wang Applying the Rasch Model (Winsteps, Facets) 4th Ed., Bond, Yan, Heene Advances in Rasch Analyses in the Human Sciences (Winsteps, Facets) 1st Ed., Boone, Staver Advances in Applications of Rasch Measurement in Science Education, X. Liu & W. J. Boone Rasch Analysis in the Human Sciences (Winsteps) Boone, Staver, Yale
Introduction to Many-Facet Rasch Measurement (Facets), Thomas Eckes Statistical Analyses for Language Testers (Facets), Rita Green Invariant Measurement with Raters and Rating Scales: Rasch Models for Rater-Mediated Assessments (Facets), George Engelhard, Jr. & Stefanie Wind Aplicação do Modelo de Rasch (Português), de Bond, Trevor G., Fox, Christine M Appliquer le modèle de Rasch: Défis et pistes de solution (Winsteps) E. Dionne, S. Béland
Exploring Rating Scale Functioning for Survey Research (R, Facets), Stefanie Wind Rasch Measurement: Applications, Khine Winsteps Tutorials - free
Facets Tutorials - free
Many-Facet Rasch Measurement (Facets) - free, J.M. Linacre Fairness, Justice and Language Assessment (Winsteps, Facets), McNamara, Knoch, Fan
Other Rasch-Related Resources: Rasch Measurement YouTube Channel
Rasch Measurement Transactions & Rasch Measurement research papers - free An Introduction to the Rasch Model with Examples in R (eRm, etc.), Debelak, Strobl, Zeigenfuse Rasch Measurement Theory Analysis in R, Wind, Hua Applying the Rasch Model in Social Sciences Using R, Lamprianou El modelo métrico de Rasch: Fundamentación, implementación e interpretación de la medida en ciencias sociales (Spanish Edition), Manuel González-Montesinos M.
Rasch Models: Foundations, Recent Developments, and Applications, Fischer & Molenaar Probabilistic Models for Some Intelligence and Attainment Tests, Georg Rasch Rasch Models for Measurement, David Andrich Constructing Measures, Mark Wilson Best Test Design - free, Wright & Stone
Rating Scale Analysis - free, Wright & Masters
Virtual Standard Setting: Setting Cut Scores, Charalambos Kollias Diseño de Mejores Pruebas - free, Spanish Best Test Design A Course in Rasch Measurement Theory, Andrich, Marais Rasch Models in Health, Christensen, Kreiner, Mesba Multivariate and Mixture Distribution Rasch Models, von Davier, Carstensen
As an Amazon Associate I earn from qualifying purchases. This does not change what you pay.

facebook Forum: Rasch Measurement Forum to discuss any Rasch-related topic

To receive News Emails about Winsteps and Facets by subscribing to the Winsteps.com email list,
enter your email address here:

I want to Subscribe: & click below
I want to Unsubscribe: & click below

Please set your SPAM filter to accept emails from Winsteps.com
The Winsteps.com email list is only used to email information about Winsteps, Facets and associated Rasch Measurement activities. Your email address is not shared with third-parties. Every email sent from the list includes the option to unsubscribe.

Questions, Suggestions? Want to update Winsteps or Facets? Please email Mike Linacre, author of Winsteps mike@winsteps.com


State-of-the-art : single-user and site licenses : free student/evaluation versions : download immediately : instructional PDFs : user forum : assistance by email : bugs fixed fast : free update eligibility : backwards compatible : money back if not satisfied
 
Rasch, Winsteps, Facets online Tutorials


 

 
Coming Rasch-related Events
Jan. 17 - Feb. 21, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
Feb. - June, 2025 On-line course: Introduction to Classical Test and Rasch Measurement Theories (D. Andrich, I. Marais, RUMM2030), University of Western Australia
Feb. - June, 2025 On-line course: Advanced Course in Rasch Measurement Theory (D. Andrich, I. Marais, RUMM2030), University of Western Australia
Apr. 21 - 22, 2025, Mon.-Tue. International Objective Measurement Workshop (IOMW) - Boulder, CO, www.iomw.net
May 16 - June 20, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
June 20 - July 18, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Further Topics (E. Smith, Facets), www.statistics.com
Oct. 3 - Nov. 7, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com

 

 

Our current URL is www.winsteps.com

Winsteps® is a registered trademark