Table 2.1 Modal observed categories (most probable categories)

(controlled by T2SELECT=, MRANGE=, MTICK=, CATREF=)

 

Table 2 for multiple-choice items.

Table 2 for polytomous items.

 

Table 2.1: shows the most probable response on the latent variable, relative to each of the other responses. The most probable response for an item (row) is the category number shown to the left of the desired location on the x-axis. The items are shown vertically by difficulty distribution. The person distribution is shown below the plot.

 

MOST PROBABLE RESPONSE: MODE  (BETWEEN "0" AND "1" IS "0", ETC.) (ILLUSTRATED BY AN OBSERVED CATEGORY)

-5   -4    -3    -2    -1     0     1     2     3     4     5

|-----+-----+-----+-----+-----+-----+-----+-----+-----+-----|  NUM   TAP

0                                                          11   15  1-3-2-4-1-3

0                                                          11   16  1-4-2-3-1-4

0                                                          11   17  1-4-3-1-2-4

|                                                           |

|                                                           |

0                                                 1         1   14  1-4-2-3-4-1

|                                                           |

0                                          1                1   12  1-3-2-4-3

0                                         1                 1   13  1-4-3-2-4

|                                                           |

0                                  1                        1   11  1-3-1-2-4

|                                                           |

|                                                           |

0                    1                                      1   10  2-4-3-1

|                                                           |

0               1                                           1    8  1-4-2-3

|                                                           |

0         1                                                 1    6  3-4-1

0         1                                                 1    9  1-3-2-4

0      1                                                    1    5  2-1-4

0      1                                                    1    7  1-4-3-2

0   1                                                       1    4  1-3-4

|-----+-----+-----+-----+-----+-----+-----+-----+-----+-----|  NUM   TAP

-5   -4    -3    -2    -1     0     1     2     3     4     5

 

                            1

1   1   2   2    2    3     2       5     4    1    2          KID

 T            S             M            S            T

0      10       20   30    60      80    90        99          PERCENTILE

 

Multiple-choice items

 

this example, for item "al07", "a" (or any other incorrect option) is most probable up to 3.2 logits, when "d", the correct response, becomes most probable according to the Rasch model.

 

TABLE 2.1: MOST PROBABLE RESPONSE: MODE  (BETWEEN "0" AND "1" IS "0", ETC.) (ILLUSTRATED BY AN OBSERVED CATEGORY)

-4    -3     -2     -1      0      1      2      3      4

|------+------+------+------+------+------+------+------|  NUM   TOPIC

a                                                  d    d   55  al07  newspaper

a                                                 c     c   64  sa01  magazine

......

b     a                                                 a   12  nm07  sign on wall

a     d                                                 d   10  nm05  public place

|------+------+------+------+------+------+------+------|  NUM   TOPIC

-4    -3     -2     -1      0      1      2      3      4

 

      1        11 1111 111 212 3 2 12   12 1     1      2  STUDENTS

      T            S           M           S            T

      0        10  20  30 40 50 60 70  80 90           99  PERCENTILE

 

M = Mean, the average of the person measures, S = One Standard Deviation from the mean, T = Two P.SDs. from the mean. Percentile is percentage below the specified position.

 

Table 2.11 is the same as Table 1, but the options are shown by their scored values, not by their codes in the data.

 

TABLE 2.11: MOST PROBABLE RESPONSE: MODE  (BETWEEN "0" AND "1" IS "0", ETC.) (BY CATEGORY SCORE)

-4    -3     -2     -1      0      1      2      3      4

|------+------+------+------+------+------+------+------|  NUM   TOPIC

0                                                  1    1   55  al07  newspaper

0                                                 1     1   64  sa01  magazine

 


 

Polytomous items

 

Tables 2.1, The "Most Probable Response" Table, selected with CURVES=001, answers the question "which category is a person of a particular measure most likely to choose?" This is the most likely category with which the persons of logit (or user-rescaled) measure shown below would respond to the item shown on the left. The area to the extreme left is all "0"; the area to the extreme right is at the top category. Each category number is shown to the left of its modal area. If a category is not shown, it is never a most likely response. An item with an extreme, perfect (maximum possible) or zero (minimum possible), score is not strictly estimable, and is omitted here. Blank lines are used to help approximate the placement of the items on the latent variable.

 

This table presents in one picture the results of this analysis in a form suitable for inference. We can predict for people of any particular measure what responses they would probably make. "M" depicts an "average" person. The left "T" a low performer. The right "T" a high performer. Look straight up from those letters to read off the expected response profiles.

 

Table 2.1 to 2.7 reports with observed categories, i.e., those in the CODES= statement.

Table 2.11 to 2.17 report with scored categories, i.e., after IVALUE=, RESCORE=, KEY1=, etc., if any.

 

 MOST PROBABLE RESPONSE: MODE  (BETWEEN "0" AND "1" IS "0", ETC.)              

 NUM  ITEM       -5    -4    -3    -2    -1     0     1     2     3     4     5

                  -------------------------------------------------------------                             

   5 FIND BOTTLES 0                                      1          2         2

  20 WATCH BUGS   0                                   1          2            2

   8 LOOK IN SIDE 0                                  1          2             2

   7 WATCH ANIMAL 0                              1          2                 2

  17 WATCH WHAT A 0                         1          2                      2

deliberate space  |                                                           |

  21 WATCH BIRD M 0                   1          2                            2

  10 LISTEN TO BI 0               1          2                                2

  12 GO TO MUSEUM 0            1          2                                   2

  18 GO ON PICNIC 0      1          2                                         2

                  -------------------------------------------------------------                             

                 -5    -4    -3    -2    -1     0     1     2     3     4     5

               

                  1                            

PERSON                                1 2 1121 174135336222232221 11 1  1    11

                                       T      S      M       S      T          

 


Help for Winsteps Rasch Measurement and Rasch Analysis Software: www.winsteps.com. Author: John Michael Linacre

Facets Rasch measurement software. Buy for $149. & site licenses. Freeware student/evaluation Minifac download
Winsteps Rasch measurement software. Buy for $149. & site licenses. Freeware student/evaluation Ministep download

Rasch Books and Publications
Invariant Measurement: Using Rasch Models in the Social, Behavioral, and Health Sciences, 2nd Edn, 2024 George Engelhard, Jr. & Jue Wang Applying the Rasch Model (Winsteps, Facets) 4th Ed., Bond, Yan, Heene Advances in Rasch Analyses in the Human Sciences (Winsteps, Facets) 1st Ed., Boone, Staver Advances in Applications of Rasch Measurement in Science Education, X. Liu & W. J. Boone Rasch Analysis in the Human Sciences (Winsteps) Boone, Staver, Yale
Introduction to Many-Facet Rasch Measurement (Facets), Thomas Eckes Statistical Analyses for Language Testers (Facets), Rita Green Invariant Measurement with Raters and Rating Scales: Rasch Models for Rater-Mediated Assessments (Facets), George Engelhard, Jr. & Stefanie Wind Aplicação do Modelo de Rasch (Português), de Bond, Trevor G., Fox, Christine M Appliquer le modèle de Rasch: Défis et pistes de solution (Winsteps) E. Dionne, S. Béland
Exploring Rating Scale Functioning for Survey Research (R, Facets), Stefanie Wind Rasch Measurement: Applications, Khine Winsteps Tutorials - free
Facets Tutorials - free
Many-Facet Rasch Measurement (Facets) - free, J.M. Linacre Fairness, Justice and Language Assessment (Winsteps, Facets), McNamara, Knoch, Fan
Other Rasch-Related Resources: Rasch Measurement YouTube Channel
Rasch Measurement Transactions & Rasch Measurement research papers - free An Introduction to the Rasch Model with Examples in R (eRm, etc.), Debelak, Strobl, Zeigenfuse Rasch Measurement Theory Analysis in R, Wind, Hua Applying the Rasch Model in Social Sciences Using R, Lamprianou El modelo métrico de Rasch: Fundamentación, implementación e interpretación de la medida en ciencias sociales (Spanish Edition), Manuel González-Montesinos M.
Rasch Models: Foundations, Recent Developments, and Applications, Fischer & Molenaar Probabilistic Models for Some Intelligence and Attainment Tests, Georg Rasch Rasch Models for Measurement, David Andrich Constructing Measures, Mark Wilson Best Test Design - free, Wright & Stone
Rating Scale Analysis - free, Wright & Masters
Virtual Standard Setting: Setting Cut Scores, Charalambos Kollias Diseño de Mejores Pruebas - free, Spanish Best Test Design A Course in Rasch Measurement Theory, Andrich, Marais Rasch Models in Health, Christensen, Kreiner, Mesba Multivariate and Mixture Distribution Rasch Models, von Davier, Carstensen
As an Amazon Associate I earn from qualifying purchases. This does not change what you pay.

facebook Forum: Rasch Measurement Forum to discuss any Rasch-related topic

To receive News Emails about Winsteps and Facets by subscribing to the Winsteps.com email list,
enter your email address here:

I want to Subscribe: & click below
I want to Unsubscribe: & click below

Please set your SPAM filter to accept emails from Winsteps.com
The Winsteps.com email list is only used to email information about Winsteps, Facets and associated Rasch Measurement activities. Your email address is not shared with third-parties. Every email sent from the list includes the option to unsubscribe.

Questions, Suggestions? Want to update Winsteps or Facets? Please email Mike Linacre, author of Winsteps mike@winsteps.com


State-of-the-art : single-user and site licenses : free student/evaluation versions : download immediately : instructional PDFs : user forum : assistance by email : bugs fixed fast : free update eligibility : backwards compatible : money back if not satisfied
 
Rasch, Winsteps, Facets online Tutorials


 

 
Coming Rasch-related Events: Winsteps and Facets
Oct 21 - 22 2024, Mon.-Tues. In person workshop: Facets and Winsteps in expert judgement test validity - UNAM (México) y Universidad Católica de Colombia. capardo@ucatolica.edu.co, benildegar@gmail.com
Oct. 4 - Nov. 8, 2024, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
Jan. 17 - Feb. 21, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
May 16 - June 20, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
June 20 - July 18, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Further Topics (E. Smith, Facets), www.statistics.com
Oct. 3 - Nov. 7, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com

 

 

Our current URL is www.winsteps.com

Winsteps® is a registered trademark