Table 31.2, 31.3 DPF list = Person measures for item classes

Table 31.2 sorts by class then item. Table 31.3 sorts by item then class. The person measures by item class are plotted in the DPF Plot.

 

Table 31 supports the investigation of item bias, Differential Person Functioning (DPF), i.e., interactions between individual persons types of items. Specify DPF= for item classifying indicators in item labels. Person bias and DPF are the same thing.

 

Example output:

You want to examine person bias (DPF) between starting-blocks in Exam1.txt. You need a column in your Winsteps item label that has two (or more) item type codes.

 

Table 31.1 is best for pairwise comparisons, e.g., Positive vs. Negative items. Use Table 31.1 if you have two classes.

 

Table 31.2 or Table 31.3 are best for multiple comparisons, e.g., regions against the national average.

 

Table 31.2 sorts by person then item class.

 

---------------------------------------------------------------------------------------------------------------

| TAP         OBSERVATIONS        BASELINE       DPF     DPF     DPF   DPF   DPF              KID             |

| CLASS    COUNT  SCORE AVERAGE EXPECT MEASURE   SCORE MEASURE   SIZE  S.E.   t    d.f. Prob. Number  Name    |

|-------------------------------------------------------------------------------------------------------------|

| 1           13       4    .31    .35   -2.94    -.04   -3.54   -.60  1.05  -.57     9 .5857      1 Adam    M|

| 2            3       2    .67    .64   -2.94     .03   -2.70    .24  1.65   .15     1 .9083      1 Adam    M|

| 3            1       1   1.00    .61   -2.94     .39   -2.53>   .41  2.18   .19     1 .8819      1 Adam    M|

| 4            1       0    .00    .00   -2.94     .00   -2.94    .00   .00   .00     1 1.000      1 Adam    M|

| 1           13       6    .46    .48    -.26    -.02    -.77   -.51  1.35  -.38     9 .7161      2 Anne    F|

 

Table 31.3 sorts by item class then person.

 

---------------------------------------------------------------------------------------------------------------

| TAP         OBSERVATIONS        BASELINE       DPF     DPF     DPF   DPF   DPF              KID             |

| CLASS    COUNT  SCORE AVERAGE EXPECT MEASURE   SCORE MEASURE   SIZE  S.E.   t    d.f. Prob. Number  Name    |

|-------------------------------------------------------------------------------------------------------------|

| 1           13       4    .31    .35   -2.94    -.04   -3.54   -.60  1.05  -.57     9 .5857      1 Adam    M|

| 1           13       6    .46    .48    -.26    -.02    -.77   -.51  1.35  -.38     9 .7161      2 Anne    F|

| 1           13       7    .54    .55     .92    -.01     .81   -.11  1.13  -.10     9 .9261      3 Audrey  F|

| 1           13       4    .31    .30   -3.61     .01   -3.54    .07  1.05   .07     9 .9483      4 Barbara F|

 

This displays a list of the local difficulty/ability estimates underlying the paired DPF analysis. These can be plotted directly from the Plots menu.

 

DPF class specification identifies the columns containing DPF classifications, with DPF= set to $S1W2 using the selection rules.

 

The DPF effects are shown ordered by CLASS within person (row of the data matrix).

 

TAP CLASS identifies the CLASS of items. KID is specified with ITEM=, e.g., the first CLASS is "1-"

OBSERVATIONS are what are seen in the data

COUNT is the number of observations of the classification used for DPF estimation, e.g., 11 responses were made by person 1 to non-extreme items in item class "1-".

AVERAGE is the average observation on the classification, e.g., 0.18 is the average score class "1-" items by person 1.

COUNT * AVERAGE = total score of person on the item class.

BASELINE is the prediction without DPF

EXPECT is the expected value of the average observation when there is no DPF, e.g., 0.92 is the expected average for person 1 on item class "1-" without DPF.

MEASURE is the what the overall ABILITY measure would be without DPF, e.g., -2.94 is the overall person ability of person 1 as reported in Table 18.

DPF: Differential Person Functioning

DPF SCORE is the difference between the observed and the expected average observations, e.g., 0.92 - 0.89= -0.03

DPF MEASURE is the person ability for this item class, e.g., person 1 has a local ability of -3.52 for item CLASS "1-".

The average of DPF measures across CLASS for an item is not the BASELINE MEASURE because score-to-measure conversion is non-linear. ">" (maximum score), "<" (minimum score), "E" (extreme score) indicate measures corresponding to extreme scores.

DPF SIZE is the difference between the DPF MEASURE for this class and the BASELINE measure ability, i.e., -3.93 - -4.40 = .48. Item 4 is .48 logits more difficult for class F than expected.

DPF S.E. is the approximate standard error of the difference, e.g., 0.89 logits

DIF t is an approximate Student's t-statistic test, estimated as DIF SIZE divided by the DIF S.E.

d.f. t has approximately (COUNT-2) degrees of freedom excluding observations of extreme items.

Prob. is the two-sided probability of Student's t. See t-statistics.

 


 

Person performance profiles by subtest

 

1. Put a subtest code in each item label
@subtest=1W1  ; position of subtest code in item label

2. Run Table 31 Differential Person Functioning for @subtest.

3. Output the DPF Excel Plots

4. The Excel Worksheet lists each person with subtest measures


Help for Winsteps Rasch Measurement and Rasch Analysis Software: www.winsteps.com. Author: John Michael Linacre

Facets Rasch measurement software. Buy for $149. & site licenses. Freeware student/evaluation Minifac download
Winsteps Rasch measurement software. Buy for $149. & site licenses. Freeware student/evaluation Ministep download

Rasch Books and Publications
Invariant Measurement: Using Rasch Models in the Social, Behavioral, and Health Sciences, 2nd Edn, 2024 George Engelhard, Jr. & Jue Wang Applying the Rasch Model (Winsteps, Facets) 4th Ed., Bond, Yan, Heene Advances in Rasch Analyses in the Human Sciences (Winsteps, Facets) 1st Ed., Boone, Staver Advances in Applications of Rasch Measurement in Science Education, X. Liu & W. J. Boone Rasch Analysis in the Human Sciences (Winsteps) Boone, Staver, Yale
Introduction to Many-Facet Rasch Measurement (Facets), Thomas Eckes Statistical Analyses for Language Testers (Facets), Rita Green Invariant Measurement with Raters and Rating Scales: Rasch Models for Rater-Mediated Assessments (Facets), George Engelhard, Jr. & Stefanie Wind Aplicação do Modelo de Rasch (Português), de Bond, Trevor G., Fox, Christine M Appliquer le modèle de Rasch: Défis et pistes de solution (Winsteps) E. Dionne, S. Béland
Exploring Rating Scale Functioning for Survey Research (R, Facets), Stefanie Wind Rasch Measurement: Applications, Khine Winsteps Tutorials - free
Facets Tutorials - free
Many-Facet Rasch Measurement (Facets) - free, J.M. Linacre Fairness, Justice and Language Assessment (Winsteps, Facets), McNamara, Knoch, Fan
Other Rasch-Related Resources: Rasch Measurement YouTube Channel
Rasch Measurement Transactions & Rasch Measurement research papers - free An Introduction to the Rasch Model with Examples in R (eRm, etc.), Debelak, Strobl, Zeigenfuse Rasch Measurement Theory Analysis in R, Wind, Hua Applying the Rasch Model in Social Sciences Using R, Lamprianou El modelo métrico de Rasch: Fundamentación, implementación e interpretación de la medida en ciencias sociales (Spanish Edition), Manuel González-Montesinos M.
Rasch Models: Foundations, Recent Developments, and Applications, Fischer & Molenaar Probabilistic Models for Some Intelligence and Attainment Tests, Georg Rasch Rasch Models for Measurement, David Andrich Constructing Measures, Mark Wilson Best Test Design - free, Wright & Stone
Rating Scale Analysis - free, Wright & Masters
Virtual Standard Setting: Setting Cut Scores, Charalambos Kollias Diseño de Mejores Pruebas - free, Spanish Best Test Design A Course in Rasch Measurement Theory, Andrich, Marais Rasch Models in Health, Christensen, Kreiner, Mesba Multivariate and Mixture Distribution Rasch Models, von Davier, Carstensen
As an Amazon Associate I earn from qualifying purchases. This does not change what you pay.

facebook Forum: Rasch Measurement Forum to discuss any Rasch-related topic

To receive News Emails about Winsteps and Facets by subscribing to the Winsteps.com email list,
enter your email address here:

I want to Subscribe: & click below
I want to Unsubscribe: & click below

Please set your SPAM filter to accept emails from Winsteps.com
The Winsteps.com email list is only used to email information about Winsteps, Facets and associated Rasch Measurement activities. Your email address is not shared with third-parties. Every email sent from the list includes the option to unsubscribe.

Questions, Suggestions? Want to update Winsteps or Facets? Please email Mike Linacre, author of Winsteps mike@winsteps.com


State-of-the-art : single-user and site licenses : free student/evaluation versions : download immediately : instructional PDFs : user forum : assistance by email : bugs fixed fast : free update eligibility : backwards compatible : money back if not satisfied
 
Rasch, Winsteps, Facets online Tutorials


 

 
Coming Rasch-related Events: Winsteps and Facets
Oct 21 - 22 2024, Mon.-Tues. In person workshop: Facets and Winsteps in expert judgement test validity - UNAM (México) y Universidad Católica de Colombia. capardo@ucatolica.edu.co, benildegar@gmail.com
Oct. 4 - Nov. 8, 2024, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
Jan. 17 - Feb. 21, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
May 16 - June 20, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
June 20 - July 18, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Further Topics (E. Smith, Facets), www.statistics.com
Oct. 3 - Nov. 7, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com

 

 

Our current URL is www.winsteps.com

Winsteps® is a registered trademark