Table 27.1 Item subtotal summaries on one line

(controlled by ISUBTOT=, UDECIMALS=, REALSE=)

These summarize the measures from the main analysis for all items selected by ISUBTOT= (Table 27), including extreme scores.

 

Table

27.2 Measure sub-totals bar charts, controlled by ISUBTOT=

27.3 Measure sub-totals summary statistics, controlled by ISUBTOT=

 

Subtotal specification is: ISUBTOTAL=$S1W1

 

ALL ACT SCORES ARE NON-EXTREME

--------------------------------------------------------------------------------------------------------------------

|    ACT   MEAN   MEAN    MEAN    S.E.                            MODEL      MODEL               TRUE   MEAN       |

|  COUNT  SCORE  COUNT  MEASURE   MEAN    P.SD    S.SD  MEDIAN  SEPARATION RELIABILITY   RMSE     SD   OUTFIT CODE |

|------------------------------------------------------------------------------------------------------------------|

|     25   95.0   75.0     .00     .29    1.41    1.43     .16     5.86        .97        .24    1.39   1.08  *    |

|      4   90.5   75.0     .31     .73    1.27    1.47    -.11     5.89        .97        .21    1.25   1.41  F    |

|      4  137.5   75.0   -2.24     .39     .67     .78   -2.26     1.62        .72        .36     .57    .94  G    |

|      5   88.6   75.0     .32     .51    1.02    1.14     .42     4.81        .96        .21    1.00    .89  L    |

|      1   83.0   75.0     .60       -     .00       -     .60      .00        .00        .19     .00    .95  M    |

|      3  105.0   75.0    -.26     .34     .49     .60    -.48     2.14        .82        .21     .44    .63  R    |

|      1   85.0   75.0     .53       -     .00       -     .53      .00        .00        .19     .00    .74  T    |

|      7   76.6   75.0     .82     .45    1.10    1.19    1.10     5.29        .97        .21    1.08   1.37  W    |

--------------------------------------------------------------------------------------------------------------------

SUBTOTAL RELIABILITY: inestimable

UMEAN=0 USCALE=1

 

Subtotal specification is: ISUBTOTAL=$S1W1

identifies the columns in the item label to be used for classifying the item by $S1W1 or whatever, using the column selection rules.  

EXTREME AND NON-EXTREME KID SCORES

ALL SCORES ARE NON-EXTREME

NON-EXTREME SCORES ONLY

The items included in this summary table.

Items with non-extreme scores (omits items with 0% and 100% success rates)

ITEM COUNT

count of items. "ITEM" is the name assigned with ITEM=

MEAN SCORE

weighted average item score by the persons

MEAN COUNT

weighted average of the count of responses by the persons

MEAN MEASURE

average measure of items

S.E. MEAN

standard error of the average measure of items. If only one item, then the S.E. of the item estimate

P.SD

population standard deviation of the item measures.

S.SD

sample standard deviation of the item measures.

MEDIAN

the measure of the middle item

REAL/MODEL SEPARATION

the separation coefficient: the "true" adjusted standard deviation / root-mean-square measurement error of the items (REALSE= inflated for misfit).

REAL/MODEL RELIABILITY

the item measure reproducibility = ("True" item measure variance / Observed variance) = Separation ² / (1 + Separation ²)

RMSE

Statistical average of the standard errors of the measures

TRUE SD

Observed population S.D. adjusted for measurement error

MEAN OUTFIT

Average outfit mean-square for the group. Expectation near 1.0

ITEM CODE

the classification code in the item label. The first line, "*", is the total for all items. The remaining codes are those in the item columns specified by $S1W1 or whatever, using the column selection rules.

SUBTOTAL RELIABILITY

the reliability (reproducibility) of the means of the subtotals = true variance / observed variance = (observed variance - error variance) / observed variance.

Observed variance = variance of MEAN MEASURES

Error variance = mean-square of the S.E. MEAN

inestimable = some subtotal counts are too small to estimate Reliability

UMEAN=0 USCALE=1

Current user-scaling

 

------------------------------------------------

|    ITEM   MEAN DIFFERENCE        Welch-2sided |

| CODE CODE MEASURE   S.E.    t    d.f.  Prob. |

|----------------------------------------------|

| 0    1      -9.06    .57 -15.95   10    .000 |

| 0    2      -9.72    .87 -11.14   10    .000 |

| 0    4      -6.29    .94  -6.71   11    .000 |

| 1    2       -.66    .66  -1.00    2    .423 |

| 1    4       2.77    .75   3.71    3    .034 |

| 2    4       3.43   1.00   3.44    3    .041 |

------------------------------------------------

 

ITEM CODE

the classification code in the item label for subtotal "1"

CODE

the classification code in the item label for subtotal "2"

MEAN DIFFERENCE

difference between the mean measures of the two CODE subtotals, "1" and "2"

MEASURE

size of the difference between "1" and "2"

S.E.

standard error of the difference = sqrt ( (S.E. Mean "1")² + (S.E. Mean "2")² )

t

Student's t = MEASURE / S.E.

Welch2-sided

2-sided t-test using Welch's adaptation of Student's t-test.

d.f.

Welch's degrees of freedom

Prob.

two-sided probability of Student's t. See t-statistics.

 

One-way ANOVA of subtotal means and variances

 

This reports a one-way analysis of variance for the subtotal means. Are they the same (statistically) as the overall mean?

 

---------------------------------------------------------------

| ANOVA -    KID                                              |

| Source  Sum-of-Squares   d.f.  Mean-Squares  F-test  Prob>F |

|-------------------------------------------------------------|

| @TOPIC            1.70    1.00         1.70    1.89   .1761 |

| Error            26.91   30.00          .90                 |

| Total            28.61   31.00          .92                 |

|-------------------------------------------------------------|

| Fixed-Effects Chi-square: 1.7026 with 1 d.f., prob. .1919   |

---------------------------------------------------------------

 

Source

the variance component.

@TYPE (the specified ISUBTOTAL= classification)

the variation of the subtotal mean measures around the grand mean.

Error

Error is the part of the total variation of the measures around their grand mean not explained by the @TYPE

Total

total variation of the measures around their grand mean

Sum-of-Squares

the variation around the relevant mean

d.f.

the degrees of freedom corresponding to the variation (= number of measures - 1)

Mean-Squares

Sum-of-Squares divided by d.f.

F-test

@TYPE Mean-Square / Error Mean-Square

Prob>F

the right-tail probability of the F-test value with (@TYPE, Error) d.f.

A probability less than .05 indicates statistically significant differences between the means.

Fixed-Effects Chi-Square (of Homogeneity)

a test of the hypothesis that all the subtotal means are the same, except for sampling error

d.f.

degrees of freedom of chi-square = number of sub-totals - 1

prob.

probability of observing this value of the chi-square or larger if the hypothesis is true. A probability less than .05 indicates statistically significant differences between the means.

inestimable

some item counts are too small and/or some variances are zero.

 

Example: test the hypothesis "All the items have the same difficulty" with a "Fixed Effects" Chi-Square of Homogeneity:

 ISUBTOTAL = $N  ; each item is in its own group

then Table 27.1.


Help for Winsteps Rasch Measurement and Rasch Analysis Software: www.winsteps.com. Author: John Michael Linacre

Facets Rasch measurement software. Buy for $149. & site licenses. Freeware student/evaluation Minifac download
Winsteps Rasch measurement software. Buy for $149. & site licenses. Freeware student/evaluation Ministep download

Rasch Books and Publications
Invariant Measurement: Using Rasch Models in the Social, Behavioral, and Health Sciences, 2nd Edn, 2024 George Engelhard, Jr. & Jue Wang Applying the Rasch Model (Winsteps, Facets) 4th Ed., Bond, Yan, Heene Advances in Rasch Analyses in the Human Sciences (Winsteps, Facets) 1st Ed., Boone, Staver Advances in Applications of Rasch Measurement in Science Education, X. Liu & W. J. Boone Rasch Analysis in the Human Sciences (Winsteps) Boone, Staver, Yale
Introduction to Many-Facet Rasch Measurement (Facets), Thomas Eckes Statistical Analyses for Language Testers (Facets), Rita Green Invariant Measurement with Raters and Rating Scales: Rasch Models for Rater-Mediated Assessments (Facets), George Engelhard, Jr. & Stefanie Wind Aplicação do Modelo de Rasch (Português), de Bond, Trevor G., Fox, Christine M Appliquer le modèle de Rasch: Défis et pistes de solution (Winsteps) E. Dionne, S. Béland
Exploring Rating Scale Functioning for Survey Research (R, Facets), Stefanie Wind Rasch Measurement: Applications, Khine Winsteps Tutorials - free
Facets Tutorials - free
Many-Facet Rasch Measurement (Facets) - free, J.M. Linacre Fairness, Justice and Language Assessment (Winsteps, Facets), McNamara, Knoch, Fan
Other Rasch-Related Resources: Rasch Measurement YouTube Channel
Rasch Measurement Transactions & Rasch Measurement research papers - free An Introduction to the Rasch Model with Examples in R (eRm, etc.), Debelak, Strobl, Zeigenfuse Rasch Measurement Theory Analysis in R, Wind, Hua Applying the Rasch Model in Social Sciences Using R, Lamprianou El modelo métrico de Rasch: Fundamentación, implementación e interpretación de la medida en ciencias sociales (Spanish Edition), Manuel González-Montesinos M.
Rasch Models: Foundations, Recent Developments, and Applications, Fischer & Molenaar Probabilistic Models for Some Intelligence and Attainment Tests, Georg Rasch Rasch Models for Measurement, David Andrich Constructing Measures, Mark Wilson Best Test Design - free, Wright & Stone
Rating Scale Analysis - free, Wright & Masters
Virtual Standard Setting: Setting Cut Scores, Charalambos Kollias Diseño de Mejores Pruebas - free, Spanish Best Test Design A Course in Rasch Measurement Theory, Andrich, Marais Rasch Models in Health, Christensen, Kreiner, Mesba Multivariate and Mixture Distribution Rasch Models, von Davier, Carstensen
As an Amazon Associate I earn from qualifying purchases. This does not change what you pay.

facebook Forum: Rasch Measurement Forum to discuss any Rasch-related topic

To receive News Emails about Winsteps and Facets by subscribing to the Winsteps.com email list,
enter your email address here:

I want to Subscribe: & click below
I want to Unsubscribe: & click below

Please set your SPAM filter to accept emails from Winsteps.com
The Winsteps.com email list is only used to email information about Winsteps, Facets and associated Rasch Measurement activities. Your email address is not shared with third-parties. Every email sent from the list includes the option to unsubscribe.

Questions, Suggestions? Want to update Winsteps or Facets? Please email Mike Linacre, author of Winsteps mike@winsteps.com


State-of-the-art : single-user and site licenses : free student/evaluation versions : download immediately : instructional PDFs : user forum : assistance by email : bugs fixed fast : free update eligibility : backwards compatible : money back if not satisfied
 
Rasch, Winsteps, Facets online Tutorials


 

 
Coming Rasch-related Events: Winsteps and Facets
Oct 21 - 22 2024, Mon.-Tues. In person workshop: Facets and Winsteps in expert judgement test validity - UNAM (México) y Universidad Católica de Colombia. capardo@ucatolica.edu.co, benildegar@gmail.com
Oct. 4 - Nov. 8, 2024, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
Jan. 17 - Feb. 21, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
May 16 - June 20, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
June 20 - July 18, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Further Topics (E. Smith, Facets), www.statistics.com
Oct. 3 - Nov. 7, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com

 

 

Our current URL is www.winsteps.com

Winsteps® is a registered trademark