Table 21 Category Probability curves and Expected score ogive

(controlled by MRANGE=, CURVES=) - also called  Item Response Curves, IRCs

 

21.1 Dichotomies: Category probabilities

 

        DICHOTOMOUS CURVES                                            

P       -------------------------------------------------------------

R  1.0  0000000000000000                             1111111111111111 

O                       000000                 111111                 

B   .8                        000           111                       

A                                00       11                          

B   .6                             00   11                            

I                                    ***                              

L   .4                             11   00                            

I                                11       00                          

T   .2                        111           000                       

Y                       111111                 000000                 

    .0  1111111111111111                             0000000000000000 

        -------------------------------------------------------------

       -6        -4        -2         0         2         4         6 

                            PERSON [MINUS]  ITEM  MEASURE          

The probability of each response is shown across the measurement continuum. The measure to be used for determining the probability of any particular response is the difference between the measure of the person and the calibration of the item. For dichotomies, only one curve is shown plotting the probability of scoring a "1" (correct), and also of scoring a "0" (incorrect) for any measure relative to item measure. For 'S' and 'F' models these curves are approximations.

21.1 Polytomies: Individual category probabilities

 

        CATEGORY PROBABILITIES: MODES - Andrich Thresholds at intersections

P       -------------------------------------------------------------

R  1.0  00000000                                             22222222 

O               0000000                               2222222         

B   .8                 000                         222                

A                         000                   222                   

B   .6                       00               22                      

I   .5                         00*111111111*22                        

L   .4                        111 00     22 111                       

I                          111      00 22      111                    

T   .2                 1111         22*00         1111                

Y               1111111        22222     00000        1111111         

    .0  ********222222222222222               000000000000000******** 

        -------------------------------------------------------------

       -5    -4    -3    -2    -1     0     1     2     3     4     5 

                            PERSON [MINUS]  ITEM  MEASURE             

See Rating scale conceptualization.

When there are more than two categories, the probability of each category is shown. The points of intersection of adjacent categories are the Rasch-Andrich thresholds (structure calibrations).

21.2 Polytomies: Expected average ratings

 

        EXPECTED SCORE ICC/IRF: MEANS

E       -------------------------------------------------------------

X    2                                                   222222222222 

P                                                 2222222             

E  1.5                                        2222                    

C                                          111                        

T                                       111  |                        

E    1                               111     |                        

D                                 111 *      |                        

    .5                         111    *      |                        

S                          0000|      *      |                        

C                   0000000    |      *      |                        

O    0  000000000000           |      *      |                        

R       -------------------------------------------------------------

E      -5    -4    -3    -2    -1     0     1     2     3     4     5 

                            PERSON [MINUS]  ITEM  MEASURE             

 

The Expected score ogive is also called the Model Item Characteristic Curve (ICC) and Item Response Function (IRF). For response structures with three or more categories, two further graphs can be drawn. The second graph depicts the expected score ogive. The vertical "*" characters correspond to integer expected scores, and the "|" characters correspond to half-point expected scores, the Rasch-half-point thresholds. The intervals between the Rasch-half-point thresholds can be thought of as the intervals corresponding to the observed categories. For the purposes of inference, measures in the zone on the x-axis between '|' and '|' correspond, on average, to the rating given on the 'y' axis, '1'. Similarly ratings on the y-axis can be thought of as corresponding to measures in the matching zone on the x-axis. The degree to which the data support this is given by the COHERENCE statistics in Table 3.2. Empirical item characteristic curves are shown in Table 29 and from the Graphs menu.

21.3 Polytomies: Cumulative category probabilities

 

        MEDIANS - Cumulative probabilities      

P       -------------------------------------------------------------

R  1.0  ********222222222222222                                       

O       0       1111111        22222                                  

B   .8  0              111          222                               

A       0                 111          22                             

B   .6  0                    11          22                           

I   .5  0----------------------111---------222----------------------- 

L   .4  0                       | 11        | 22                      

I       0                       |   11      |   222                   

T   .2  0                       |     111   |      222                

Y       0                       |        11111        2222222         

    .0  0                       |           | 111111111111111******** 

        -------------------------------------------------------------

       -5    -4    -3    -2    -1     0     1     2     3     4     5 

                            PERSON [MINUS]  ITEM  MEASURE

The third graph is of the zone curves which indicate the probability of an item score at or below the stated category for any particular difference between person measure and item calibration. The area to the left of the "0" ogive corresponds to "0". The right-most area corresponds to the highest category. The P=0.5 intercepts are the median cumulative probabilities. "|" indicate the Rasch-Thurstonian thresholds.

 

If ISGROUPS= defines more than one item group, then one set of these curves is shown for each item group: 21.1, 21.2, 21.3, then 21.11, 21.12, 21.13, then 21.21, 21.22, 21.23, etc. Each item group is identified by an example item from the group.

 

To produce these using other software, see GRFILE= or Graphs Window, Copy Data.


Help for Winsteps Rasch Measurement and Rasch Analysis Software: www.winsteps.com. Author: John Michael Linacre

Facets Rasch measurement software. Buy for $149. & site licenses. Freeware student/evaluation Minifac download
Winsteps Rasch measurement software. Buy for $149. & site licenses. Freeware student/evaluation Ministep download

Rasch Books and Publications
Invariant Measurement: Using Rasch Models in the Social, Behavioral, and Health Sciences, 2nd Edn, 2024 George Engelhard, Jr. & Jue Wang Applying the Rasch Model (Winsteps, Facets) 4th Ed., Bond, Yan, Heene Advances in Rasch Analyses in the Human Sciences (Winsteps, Facets) 1st Ed., Boone, Staver Advances in Applications of Rasch Measurement in Science Education, X. Liu & W. J. Boone Rasch Analysis in the Human Sciences (Winsteps) Boone, Staver, Yale
Introduction to Many-Facet Rasch Measurement (Facets), Thomas Eckes Statistical Analyses for Language Testers (Facets), Rita Green Invariant Measurement with Raters and Rating Scales: Rasch Models for Rater-Mediated Assessments (Facets), George Engelhard, Jr. & Stefanie Wind Aplicação do Modelo de Rasch (Português), de Bond, Trevor G., Fox, Christine M Appliquer le modèle de Rasch: Défis et pistes de solution (Winsteps) E. Dionne, S. Béland
Exploring Rating Scale Functioning for Survey Research (R, Facets), Stefanie Wind Rasch Measurement: Applications, Khine Winsteps Tutorials - free
Facets Tutorials - free
Many-Facet Rasch Measurement (Facets) - free, J.M. Linacre Fairness, Justice and Language Assessment (Winsteps, Facets), McNamara, Knoch, Fan
Other Rasch-Related Resources: Rasch Measurement YouTube Channel
Rasch Measurement Transactions & Rasch Measurement research papers - free An Introduction to the Rasch Model with Examples in R (eRm, etc.), Debelak, Strobl, Zeigenfuse Rasch Measurement Theory Analysis in R, Wind, Hua Applying the Rasch Model in Social Sciences Using R, Lamprianou El modelo métrico de Rasch: Fundamentación, implementación e interpretación de la medida en ciencias sociales (Spanish Edition), Manuel González-Montesinos M.
Rasch Models: Foundations, Recent Developments, and Applications, Fischer & Molenaar Probabilistic Models for Some Intelligence and Attainment Tests, Georg Rasch Rasch Models for Measurement, David Andrich Constructing Measures, Mark Wilson Best Test Design - free, Wright & Stone
Rating Scale Analysis - free, Wright & Masters
Virtual Standard Setting: Setting Cut Scores, Charalambos Kollias Diseño de Mejores Pruebas - free, Spanish Best Test Design A Course in Rasch Measurement Theory, Andrich, Marais Rasch Models in Health, Christensen, Kreiner, Mesba Multivariate and Mixture Distribution Rasch Models, von Davier, Carstensen
As an Amazon Associate I earn from qualifying purchases. This does not change what you pay.

facebook Forum: Rasch Measurement Forum to discuss any Rasch-related topic

To receive News Emails about Winsteps and Facets by subscribing to the Winsteps.com email list,
enter your email address here:

I want to Subscribe: & click below
I want to Unsubscribe: & click below

Please set your SPAM filter to accept emails from Winsteps.com
The Winsteps.com email list is only used to email information about Winsteps, Facets and associated Rasch Measurement activities. Your email address is not shared with third-parties. Every email sent from the list includes the option to unsubscribe.

Questions, Suggestions? Want to update Winsteps or Facets? Please email Mike Linacre, author of Winsteps mike@winsteps.com


State-of-the-art : single-user and site licenses : free student/evaluation versions : download immediately : instructional PDFs : user forum : assistance by email : bugs fixed fast : free update eligibility : backwards compatible : money back if not satisfied
 
Rasch, Winsteps, Facets online Tutorials


 

 
Coming Rasch-related Events: Winsteps and Facets
Oct 21 - 22 2024, Mon.-Tues. In person workshop: Facets and Winsteps in expert judgement test validity - UNAM (México) y Universidad Católica de Colombia. capardo@ucatolica.edu.co, benildegar@gmail.com
Oct. 4 - Nov. 8, 2024, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
Jan. 17 - Feb. 21, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
May 16 - June 20, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
June 20 - July 18, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Further Topics (E. Smith, Facets), www.statistics.com
Oct. 3 - Nov. 7, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com

 

 

Our current URL is www.winsteps.com

Winsteps® is a registered trademark