Rating scale conceptualization: Andrich, Thurstonian, half-point thresholds

(See Table 1, Table 3.2, Table 12, Table 21, Graphs)

 

There are several ways of conceptualizing a rating scale item. They all contain exactly the same measurement information, but communicated in different ways. Usually, one of these alternatives will be most meaningful for your audience.  

The plots corresponding to these approaches are shown in Table 21, and also on the Graphs screen.

 

-------------------------------------------------------------------          

|CATEGORY   OBSERVED|OBSVD SAMPLE|INFIT OUTFIT|| ANDRICH |CATEGORY|          

|LABEL SCORE COUNT %|AVRGE EXPECT|  MNSQ  MNSQ||THRESHOLD| MEASURE|          

|-------------------+------------+------------++---------+--------          |

|  0   0     378  20|  -.87 -1.03|  1.08  1.19||  NONE   |( -2.07)| 0 Dislike

|  1   1     620  34|   .13   .33|   .85   .69||    -.86 |    .00 | 1 Neutral

|  2   2     852  46|  2.24  2.16|  1.00  1.47||     .86 |(  2.07)| 2 Like   

-------------------------------------------------------------------          

 

0. Distribution of frequencies of observation in each category. For a rating-scale for which inferences will be made at the category level, we like to see a uniform process at work. When applied to a sample, this would produce a smooth distribution of category frequencies. Unimodal without sharp peaks or troughs. No statistical test is intended, but merely Berkson's "inter-ocular traumatic test" (= what hits you between the eyes).

 

1. If you conceptualize the rating scale in terms of the probability of individual categories (Andrich's approach), then the  Andrich Thresholds are of interest. The Andrich thresholds are the points at which adjacent categories are equally probable.

 

    CATEGORY PROBABILITIES MODES - Andrich Thresholds at intersections

P       ------------------------------------------------------------- 

R  1.0  00000000                                             22222222 

O               0000000                               2222222         

B   .8                 000                         222                

A                         000                   222                   

B   .6                       00               22                      

I   .5                         00*111111111*22                        

L   .4                        111|00     22|111                       

I                          111   |  00 22  |   111                    

T   .2                 1111      |  22*00  |      1111                

Y               1111111        22222     00000        1111111         

    .0  ********222222222222222  |         |  000000000000000******** 

        ------------------------------------------------------------- 

       -5    -4    -3    -2    -1     0     1     2     3     4     5 

                            PERSON [MINUS]  ITEM  MEASURE             

 

2. If you conceptualize the rating scale in terms of average ratings on the model (predicted) item characteristic curve (ICC), then "Category measures" are of interest. The "Category Measures" are the points on the latent variable at which the expected score on the item equals the category number. The Rasch-half-point thresholds define the ends of each category interval.  These are shown in Table 12.5.

 

        EXPECTED SCORE OGIVE MEANS                                    

E       ------------------------------------------------------------- 

X    2                                                   222222222222 

P                                                 2222222             

E  1.5----------------------------------------2222*                   

C                                          111    *                   

T                                       111       *                   

E    1-------------------------------111          *                   

D                                 111 *           *                   

                               111    *           *                   

S   .5--------------------00000       *           *                   

C                   000000*           *           *                   

O    0  000000000000      *           *           *                   

R       ------------------------------------------------------------  

E      -5    -4    -3    -2    -1     0     1     2     3     4     5 

                            PERSON [MINUS]  ITEM  MEASURE             

 

---------------------------------------------------------------------------          

|CATEGORY    STRUCTURE   |  SCORE-TO-MEASURE   | 50% CUM.| COHERENCE|ESTIM|          

| LABEL    MEASURE  S.E. | AT CAT. ----ZONE----|PROBABLTY| M->C C->M|DISCR|          

|------------------------+---------------------+---------+----------+-----|          

|   0      NONE          |( -2.07) -INF   -1.19|         |  62%  42%|     | 0 Dislike

|   1        -.86    .07 |    .00  -1.19   1.19|   -1.00 |  54%  71%|  .73| 1 Neutral

|   2         .86    .06 |(  2.07)  1.19  +INF |    1.00 |  85%  78%| 1.19| 2 Like   

---------------------------------------------------------------------------          

 

3. If you conceptualize the rating scale in terms of the probability of accumulated categories (Thurstone's approach), then Rasch-Thurstonian thresholds = "50% Cumulative Probabilities" are of interest. 50% Cum Probability is the point at which the probability of being observed in the categories below = the probability of being observed in this category or above.  These are shown in Table 12.6.

 

Thurstonian thresholds are category boundaries on the latent variable, where we define "boundary" to mean "if someone has an ability measure exactly on a category boundary, then that person has a 50% chance of being observed in a category below the boundary (including categories down to the bottom of the rating scale) and a 50% chance of being observed in a category above the boundary (including categories up to the top of the rating scale)". This is the same definition that we apply to the only category boundary for a dichotomous item, between 0 and 1. Someone exactly at the 0-1 boundary (the item difficulty) has this same 50-50 chance.

 

The Rasch-Thurstonian thresholds also approximate the item difficulties when the rating scales are dichotomized between the categories below the target category and those at and above the  target category. This is useful when the probability of "success" on a polytomous item must be computed. www.rasch.org/rmt/rmt233e.htm

 

        MEDIANS - Cumulative probabilities      

P       ------------------------------------------------------------- 

R  1.0  ********222222222222222                                       

O       0       1111111        22222                                  

B   .8  0              111          222                               

A       0                 111          22                             

B   .6  0                    11          22                           

I   .5  0----------------------111---------222----------------------- 

L   .4  0                       | 11        | 22                      

I       0                       |   11      |   222                   

T   .2  0                       |     111   |      222                

Y       0                       |        11111        2222222         

    .0  0                       |           | 111111111111111******** 

        ------------------------------------------------------------- 

       -5    -4    -3    -2    -1     0     1     2     3     4     5 

                            PERSON [MINUS]  ITEM  MEASURE             

 

 


Help for Winsteps Rasch Measurement and Rasch Analysis Software: www.winsteps.com. Author: John Michael Linacre

Facets Rasch measurement software. Buy for $149. & site licenses. Freeware student/evaluation Minifac download
Winsteps Rasch measurement software. Buy for $149. & site licenses. Freeware student/evaluation Ministep download

Rasch Books and Publications
Invariant Measurement: Using Rasch Models in the Social, Behavioral, and Health Sciences, 2nd Edn, 2024 George Engelhard, Jr. & Jue Wang Applying the Rasch Model (Winsteps, Facets) 4th Ed., Bond, Yan, Heene Advances in Rasch Analyses in the Human Sciences (Winsteps, Facets) 1st Ed., Boone, Staver Advances in Applications of Rasch Measurement in Science Education, X. Liu & W. J. Boone Rasch Analysis in the Human Sciences (Winsteps) Boone, Staver, Yale
Introduction to Many-Facet Rasch Measurement (Facets), Thomas Eckes Statistical Analyses for Language Testers (Facets), Rita Green Invariant Measurement with Raters and Rating Scales: Rasch Models for Rater-Mediated Assessments (Facets), George Engelhard, Jr. & Stefanie Wind Aplicação do Modelo de Rasch (Português), de Bond, Trevor G., Fox, Christine M Appliquer le modèle de Rasch: Défis et pistes de solution (Winsteps) E. Dionne, S. Béland
Exploring Rating Scale Functioning for Survey Research (R, Facets), Stefanie Wind Rasch Measurement: Applications, Khine Winsteps Tutorials - free
Facets Tutorials - free
Many-Facet Rasch Measurement (Facets) - free, J.M. Linacre Fairness, Justice and Language Assessment (Winsteps, Facets), McNamara, Knoch, Fan
Other Rasch-Related Resources: Rasch Measurement YouTube Channel
Rasch Measurement Transactions & Rasch Measurement research papers - free An Introduction to the Rasch Model with Examples in R (eRm, etc.), Debelak, Strobl, Zeigenfuse Rasch Measurement Theory Analysis in R, Wind, Hua Applying the Rasch Model in Social Sciences Using R, Lamprianou El modelo métrico de Rasch: Fundamentación, implementación e interpretación de la medida en ciencias sociales (Spanish Edition), Manuel González-Montesinos M.
Rasch Models: Foundations, Recent Developments, and Applications, Fischer & Molenaar Probabilistic Models for Some Intelligence and Attainment Tests, Georg Rasch Rasch Models for Measurement, David Andrich Constructing Measures, Mark Wilson Best Test Design - free, Wright & Stone
Rating Scale Analysis - free, Wright & Masters
Virtual Standard Setting: Setting Cut Scores, Charalambos Kollias Diseño de Mejores Pruebas - free, Spanish Best Test Design A Course in Rasch Measurement Theory, Andrich, Marais Rasch Models in Health, Christensen, Kreiner, Mesba Multivariate and Mixture Distribution Rasch Models, von Davier, Carstensen
As an Amazon Associate I earn from qualifying purchases. This does not change what you pay.

facebook Forum: Rasch Measurement Forum to discuss any Rasch-related topic

To receive News Emails about Winsteps and Facets by subscribing to the Winsteps.com email list,
enter your email address here:

I want to Subscribe: & click below
I want to Unsubscribe: & click below

Please set your SPAM filter to accept emails from Winsteps.com
The Winsteps.com email list is only used to email information about Winsteps, Facets and associated Rasch Measurement activities. Your email address is not shared with third-parties. Every email sent from the list includes the option to unsubscribe.

Questions, Suggestions? Want to update Winsteps or Facets? Please email Mike Linacre, author of Winsteps mike@winsteps.com


State-of-the-art : single-user and site licenses : free student/evaluation versions : download immediately : instructional PDFs : user forum : assistance by email : bugs fixed fast : free update eligibility : backwards compatible : money back if not satisfied
 
Rasch, Winsteps, Facets online Tutorials


 

 
Coming Rasch-related Events
Jan. 17 - Feb. 21, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
Feb. - June, 2025 On-line course: Introduction to Classical Test and Rasch Measurement Theories (D. Andrich, I. Marais, RUMM2030), University of Western Australia
Feb. - June, 2025 On-line course: Advanced Course in Rasch Measurement Theory (D. Andrich, I. Marais, RUMM2030), University of Western Australia
Apr. 21 - 22, 2025, Mon.-Tue. International Objective Measurement Workshop (IOMW) - Boulder, CO, www.iomw.net
May 16 - June 20, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
June 20 - July 18, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Further Topics (E. Smith, Facets), www.statistics.com
Oct. 3 - Nov. 7, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com

 

 

Our current URL is www.winsteps.com

Winsteps® is a registered trademark