Table 8.1 Rating (or partial credit) scale statistics

For each modeled scale code in Models= and Rating (or partial credit) scale= with observations found in Data=, a table is produced. The heading describes to which model the scale applies. Only columns applicable to the type of scale are output.

 

+-------------------------------------------------------------------------------------------------------------------------------------------+

|           DATA                 |  QUALITY CONTROL  |RASCH-ANDRICH|  EXPECTATION  |  MOST  |  RASCH-  | Cat| Obsd-Expd  ANDRICH|Response   |

|      Category Counts       Cum.| Avge  Exp.  OUTFIT| Thresholds  |  Measure at   |PROBABLE| THURSTONE|PEAK|Diagnostic  Thresh.|Category   |

|Score Total      Used    %    % | Meas  Meas   MnSq |Measure  S.E.|Category  -0.5 |  from  |Thresholds|Prob| Residual   Displac|  Name     |

|--------------------------------+-------------------+-------------+---------------+--------+----------+----+-------------------+-----------|

|  0     452       378   20%  20%|  -.87  -1.03  1.2 |             |( -2.04)       |   low  |   low    |100%|      -.9          | dislike   |

|  1     620       620   34%  54%|   .13    .33   .7 |  -.85    .07|    .00   -1.17|   -.85 |  -1.00   | 54%|                   | don't know|

|  2     864       852   46% 100%|  2.23   2.15  1.5 |   .85    .06|(  2.05)   1.18|    .85 |    .99   |100%|                   | like      |

+---------------------------------------------------------------------(Mean)---------(Modal)--(Median)--------------------------------------+

 

The column headings mean:

DATA

Information relating to the data

Score

Cardinal value assigned to each category, i.e., its rating.

If two Scores are shown, the second score is after structural zeroes have been removed

Category Counts

Total =

Used  =

 

Number of observations of this category in the analysis

Number of observations that participated in the estimation (excludes extreme scores)

%

Percent of the Used responses which are in this category.

 

The observed probability is the "Category Counts %" divided by 100.

 

The probability of paired agreement by chance is sum (probability of each category**2) across all the categories. In the Table above,

Probabilities = .20, .34, .46  (they sum to 1.0)

Probability**2 = Probability * Probability = .04, .13, .21

Sum (Probability**2) = .04 + .13 + .21 = .38 = Agreement by chance

Cum. %

Percent of the Used responses in or below this category.

QUALITY CONTROL

Information relating to the validity of the categorization.

Avge Meas

The average of the measures that are modeled to generate the observations in this category. If Average Measure does not increase with each higher category, then the category average measure is flagged with a "*", and doubt is cast on the idea that higher categories correspond to "more" of the variable.

Exp. Meas

The expected value of the average measure if these data fit the Rasch model.

OUTFIT MnSq

The unweighted mean-square for observations in this category.

Mean-squares have expectation of 1.0. Values much larger than 1.0 indicate unexpected observations in this category. Extreme categories have greater opportunity for large mean-squares than central categories.

The INFIT MnSq is not reported because it approximates the OUTFIT MnSq when the data are stratified by category.

RASCH-ANDRICH THRESHOLDS

Step calibrations, rating scale structure. If these are disordered, see Disordered Rasch-Andrich thresholds.

Measure

value of the Rasch-Andrich threshold, the location on the latent variable (relative to the center of the rating scale) where adjacent categories are equally probable. This is the Rasch model parameter. Use this for anchoring rating scale, or for estimation starting-values.

S.E.

standard error of the Rasch-Andrich threshold (step calibration).

For dichotomous items, no S.E. is reported because there is no estimable threshold parameter.

EXPECTATION Measure at

gives the details of the logit-to-expected-score ogive. This is the expected (mean) value of the observations for measures at this point on the latent variable relative to the rating scale.

at Category

logit measure for the expected score on the rating scale corresponding to the value in the category score column. Measures corresponding to extreme responses, e.g., (-2.70), correspond to expected responses 0.25 score points from the extreme response, i.e., half way between the extreme response and 0.5 score points.

at -0.5

logit measure for the expected score corresponding to the value in the category score column less 0.5 score points. These can be thought of as the transition points into one expected score from the one below.

MOST PROBABLE from

lowest measure at which this category is the one most probable to be observed. It continues to be the most probable (modal) category until a numerically higher category becomes most probable.

"low"

indicates the most probable category at the low end of the scale.

"no"

indicates this category is never the most probable to be observed for any measure.

RASCH-THURSTONE Thresholds

measure at which the probability of being rated in this category or above equals that of being rated in any of the category below, i.e., is .5., i.e., the 50% (median) cumulative probability threshold.

Cat PEAK Prob

The largest percentage probability this category has of being observed at any measure. Extreme categories have a maximum probability of 100% at the extremes of the measurement continuum. Intermediate categories have their peak probabilities when the expected response value is numerically equal to the intermediate category's response value, the "at Category" value.

Obsd-Expd Diagnostic Residual

This column is produced only when the difference between the observed count of responses and the expected count, based on the Rasch measures, is greater than 0.5 for some category. This can be due to

i) lack of convergence: set smaller values in Convergence=

ii) anchor values incompatible with the data

iii) responses do not match the specified scale structure, e.g., Poisson counts.

iv) contradictory modeling, e.g., models = ?,?,#,#,R6 can imply contradictory estimates for elements.

ANDRICH Threshold Displacement

Add this to the Andrich threshold to obtain approximate value with no residual

Response Category Name =

name of category from Rating (or partial credit) scale= specification

 

Optimizing Rating-Scale Categorization: When/How to Collapse Categories for Better Measurement

 

Classical Test Theory says "The categorization with the highest person "test" reliability is the best". We can evaluate this by looking at the Reliability in Facets Table 7 of the person facet. A similar investigation is done at www.rasch.org/rmt/rmt101k.htm

 

Rasch Theory says "Each advancing category of the rating scale corresponds to one higher qualitative level of performance." We can evaluate this by looking at the "Avge Meas" (Average Measure) for the rating scale in Facets Table 8.1. The average measures should advance and be close to their "Exp. Meas" (Expected Measures). Collapse together Average Measures that are disordered or very close together. Also, to avoid accidents in the data biasing results, we want no category to have less than 10 ratings. We also like to see that each category has reasonable fit statistics. If you intend to make inferences at the category level (as opposed to the overall score/measure level) then the Rasch-Andrich Thresholds should also advance.

 


Unobserved Categories: Structural Zeroes or Incidental (Sampling) Zeroes

Structural zero: A category cannot be observed, and is omitted from qualitative levels. (The default.)

"Category" shows the category number. "Score" shows the value used for analysis.

 

Model = ?,?,R3

+----------------------------------------------------------------------------------------------------------------+

|         DATA             |  QUALITY CONTROL  |RASCH-ANDRICH|  EXPECTATION  |  MOST  |.5 Cumultv| Cat| Obsd-Expd|

| Category     Counts  Cum.| Avge  Exp.  OUTFIT| THRESHOLDS  |  Measure at   |PROBABLE|Probabilty|PEAK|Diagnostic|

|   Score    Used   %    % | Meas  Meas   MnSq |Measure  S.E.|Category  -0.5 |  from  |    at    |Prob| Residual |

|--------------------------+-------------------+-------------+---------------+--------+----------+----+----------|

|  0   0      378  20%  20%|  -.87  -1.03  1.2 |             |( -2.04)       |   low  |   low    |100%|      -.9 |

|  1   1      620  34%  54%|   .13    .33   .7 |  -.85    .07|    .00   -1.17|   -.85 |  -1.00   | 54%|          |

|  2                       |                   |             |               |        |          |    |          |

|  3   2      852  46% 100%|  2.23   2.15  1.5 |   .85    .06|(  2.05)   1.18|    .85 |    .99   |100%|          |

+---------------------------------------------------------------(Mean)---------(Modal)--(Median)-----------------+

 

Incidental (Sampling) zero: A category can be observed (but not in this dataset). It is included in the qualitative levels. (Keep.) The "Category Score" is the value used for analysis.

 

Model = ?,?,R3K   <= K means "Keep unobserved intermediate categories"

+------------------------------------------------------------------------------------------------------------+

|      DATA            |  QUALITY CONTROL  |RASCH-ANDRICH|  EXPECTATION  |  MOST  |.5 Cumultv| Cat| Obsd-Expd|

| Category Counts  Cum.| Avge  Exp.  OUTFIT| THRESHOLDS  |  Measure at   |PROBABLE|Probabilty|PEAK|Diagnostic|

|Score   Used   %    % | Meas  Meas   MnSq |Measure  S.E.|Category  -0.5 |  from  |    at    |Prob| Residual |

|----------------------+-------------------+-------------+---------------+--------+----------+----+----------|

|  0      378  20%  20%|  -.68   -.74  1.2 |             |( -1.99)       |   low  |   low    |100%|      1.0 |

|  1      620  34%  54%|  -.11   -.06   .6 |  -.90    .07|   -.23   -1.09|   -.90 |   -.95   | 56%|      -.7 |

|  2        0   0%  54%|                   |             |    .63     .24|        |    .55   |  0%|          |

|  3      852  46% 100%|  1.35   1.34  1.7 |   .90    .07|(  1.50)   1.10|    .90 |    .55   |100%|          |

+-----------------------------------------------------------(Mean)---------(Modal)--(Median)-----------------+

 


 

Equivalence of Facets Table 8 with Winsteps Table 3.2

 

Facets Table 8

+------------------------------------------------------------------------------------------------------------------------+

|      DATA            |  QUALITY CONTROL  |RASCH-ANDRICH|  EXPECTATION  |  MOST  |  RASCH-  | Cat| Obsd-Expd|Response   |

| Category Counts  Cum.| Avge  Exp.  OUTFIT| Thresholds  |  Measure at   |PROBABLE| THURSTONE|PEAK|Diagnostic|Category   |

|Score   Used   %    % | Meas  Meas   MnSq |Measure  S.E.|Category  -0.5 |  from  |Thresholds|Prob| Residual |  Name     |

|----------------------+-------------------+-------------+---------------+--------+----------+----+----------+-----------|

|  0      378  20%  20%|  -.87  -1.03  1.2 |             |( -2.04)       |   low  |   low    |100%|      -.9 | dislike   |

|  1      620  34%  54%|   .13    .33   .7 |  -.85    .07|    .00   -1.17|   -.85 |  -1.00   | 54%|          | don't know|

|  2      852  46% 100%|  2.23   2.15  1.5 |   .85    .06|(  2.05)   1.18|    .85 |    .99   |100%|          | like      |

+-----------------------------------------------------------(Mean)---------(Modal)--(Median)-----------------------------+

 

Winsteps Table 3.2

-------------------------------------------------------------------

|CATEGORY   OBSERVED|OBSVD SAMPLE|INFIT OUTFIT||STRUCTURE|CATEGORY|

|LABEL SCORE COUNT %|AVRGE EXPECT|  MNSQ  MNSQ||CALIBRATN| MEASURE|

|-------------------+------------+------------++---------+--------|

|  0   0     378  20|  -.87 -1.03|  1.08  1.19||  NONE   |( -2.07)| 0 Dislike

|  1   1     620  34|   .13   .33|   .85   .69||    -.86 |    .00 | 1 Neutral

|  2   2     852  46|  2.24  2.16|  1.00  1.47||     .86 |(  2.07)| 2 Like

-------------------------------------------------------------------

---------------------------------------------------------------------------

|CATEGORY    STRUCTURE   |  SCORE-TO-MEASURE   | 50% CUM.| COHERENCE|ESTIM|

| LABEL    MEASURE  S.E. | AT CAT. ----ZONE----|PROBABLTY| M->C C->M|DISCR|

|------------------------+---------------------+---------+----------+-----|

|   0      NONE          |( -2.07) -INF   -1.19|         |  62%  42%|     | 0 Dislike

|   1        -.86    .07 |    .00  -1.19   1.19|   -1.00 |  54%  71%|  .73| 1 Neutral

|   2         .86    .06 |(  2.07)  1.19  +INF |    1.00 |  85%  78%| 1.19| 2 Like

---------------------------------------------------------------------------

 

Winsteps field:

Facets field:

CATEGORY LABEL

Category Score

CATEGORY SCORE

Category Score

COUNT

Used

%

%

...

Cum. %

OBSVD AVRGE

Avge Meas

SAMPLE EXPECT

Exp. Meas

INFIT MNSQ

...

OUTFIT MNSQ

OUTFIT MnSq

STRUCTURE CALIBRATN

RASCH-ANDRICH Thresholds Measure

*CATEGORY MEASURE

EXPECTATION Measure at Category

*STRUCTURE MEASURE

RASCH-ANDRICH Thresholds Measure

STRUCTURE S.E.

RASCH-ANDRICH Thresholds S.E.

*SCORE-TO-MEASURE AT CAT.

EXPECTATION Measure at Category

*SCORE-TO-MEASURE --ZONE--

EXPECTATION Measure at -0.5

*50% CUM. PROBALTY

RASCH-THURSTONE Thresholds

COHERENCE M->C

...

COHERENCE C->M

...

ESTIM DISCR

...

...

MOST PROBABLE from

...

Cat PEAK Prob

OBSERVED-EXPECTED RESIDUAL DIFFERENCE

Obsd-Expd Diagnostic Residual

(text to right of table)

Response Category Name

* = In Winsteps only, includes item difficulty for Partial Credit model


Help for Facets (64-bit) Rasch Measurement and Rasch Analysis Software: www.winsteps.com Author: John Michael Linacre.
 

Facets Rasch measurement software. Buy for $149. & site licenses. Freeware student/evaluation Minifac download
Winsteps Rasch measurement software. Buy for $149. & site licenses. Freeware student/evaluation Ministep download

Rasch Books and Publications
Invariant Measurement: Using Rasch Models in the Social, Behavioral, and Health Sciences, 2nd Edn, 2024 George Engelhard, Jr. & Jue Wang Applying the Rasch Model (Winsteps, Facets) 4th Ed., Bond, Yan, Heene Advances in Rasch Analyses in the Human Sciences (Winsteps, Facets) 1st Ed., Boone, Staver Advances in Applications of Rasch Measurement in Science Education, X. Liu & W. J. Boone Rasch Analysis in the Human Sciences (Winsteps) Boone, Staver, Yale
Introduction to Many-Facet Rasch Measurement (Facets), Thomas Eckes Statistical Analyses for Language Testers (Facets), Rita Green Invariant Measurement with Raters and Rating Scales: Rasch Models for Rater-Mediated Assessments (Facets), George Engelhard, Jr. & Stefanie Wind Aplicação do Modelo de Rasch (Português), de Bond, Trevor G., Fox, Christine M Appliquer le modèle de Rasch: Défis et pistes de solution (Winsteps) E. Dionne, S. Béland
Exploring Rating Scale Functioning for Survey Research (R, Facets), Stefanie Wind Rasch Measurement: Applications, Khine Winsteps Tutorials - free
Facets Tutorials - free
Many-Facet Rasch Measurement (Facets) - free, J.M. Linacre Fairness, Justice and Language Assessment (Winsteps, Facets), McNamara, Knoch, Fan
Other Rasch-Related Resources: Rasch Measurement YouTube Channel
Rasch Measurement Transactions & Rasch Measurement research papers - free An Introduction to the Rasch Model with Examples in R (eRm, etc.), Debelak, Strobl, Zeigenfuse Rasch Measurement Theory Analysis in R, Wind, Hua Applying the Rasch Model in Social Sciences Using R, Lamprianou El modelo métrico de Rasch: Fundamentación, implementación e interpretación de la medida en ciencias sociales (Spanish Edition), Manuel González-Montesinos M.
Rasch Models: Foundations, Recent Developments, and Applications, Fischer & Molenaar Probabilistic Models for Some Intelligence and Attainment Tests, Georg Rasch Rasch Models for Measurement, David Andrich Constructing Measures, Mark Wilson Best Test Design - free, Wright & Stone
Rating Scale Analysis - free, Wright & Masters
Virtual Standard Setting: Setting Cut Scores, Charalambos Kollias Diseño de Mejores Pruebas - free, Spanish Best Test Design A Course in Rasch Measurement Theory, Andrich, Marais Rasch Models in Health, Christensen, Kreiner, Mesba Multivariate and Mixture Distribution Rasch Models, von Davier, Carstensen
As an Amazon Associate I earn from qualifying purchases. This does not change what you pay.

facebook Forum: Rasch Measurement Forum to discuss any Rasch-related topic

To receive News Emails about Winsteps and Facets by subscribing to the Winsteps.com email list,
enter your email address here:

I want to Subscribe: & click below
I want to Unsubscribe: & click below

Please set your SPAM filter to accept emails from Winsteps.com
The Winsteps.com email list is only used to email information about Winsteps, Facets and associated Rasch Measurement activities. Your email address is not shared with third-parties. Every email sent from the list includes the option to unsubscribe.

Questions, Suggestions? Want to update Winsteps or Facets? Please email Mike Linacre, author of Winsteps mike@winsteps.com


State-of-the-art : single-user and site licenses : free student/evaluation versions : download immediately : instructional PDFs : user forum : assistance by email : bugs fixed fast : free update eligibility : backwards compatible : money back if not satisfied
 
Rasch, Winsteps, Facets online Tutorials

Coming Rasch-related Events
Jan. 17 - Feb. 21, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
Feb. - June, 2025 On-line course: Introduction to Classical Test and Rasch Measurement Theories (D. Andrich, I. Marais, RUMM2030), University of Western Australia
Feb. - June, 2025 On-line course: Advanced Course in Rasch Measurement Theory (D. Andrich, I. Marais, RUMM2030), University of Western Australia
Apr. 21 - 22, 2025, Mon.-Tue. International Objective Measurement Workshop (IOMW) - Boulder, CO, www.iomw.net
May 16 - June 20, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
June 20 - July 18, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Further Topics (E. Smith, Facets), www.statistics.com
Oct. 3 - Nov. 7, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com

 

Our current URL is www.winsteps.com

Winsteps® is a registered trademark