Table 8.1 Dichotomy, binomial trial and Poisson statistics

Scale codes in Models= and Rating (or partial credit) scale= control this Table of statistics for scale structures. For each modeled scale found in the data, a table is produced.

 


 

To see the Average Measure for the categories of each item for the Rating Scale model: ?,?,?,...

1. do the rating scale analysis

2. output the anchor file: Anchorfile=

3. leave everything anchored, but change the Models= to put # for the facet you want the ability mean measures.

4. analyze the anchor file

 


 

Dichotomies

This is generated by

Models=?,?,D

 

Table 8.1 Category Statistics.

 

Model = ?,?,D

+----------------------------------------------------+

|           DATA                 |   QUALITY CONTROL |

|      Category Counts       Cum.|  Avge  Exp. OUTFIT|

|Score Total      Used    %    % |  Meas  Meas  MnSq |

|--------------------------------+-------------------|

|  0     289       240   50%  50%| -3.39  -3.38   .8 |

|  1     341       236   50% 100%|  3.06   3.05   .6 |

+----------------------------------------------------+

 

The column headings mean:

 

DATA =

Information relating to the data

Score =

Cardinal value assigned to each category, i.e., its rating.

Category Counts

Total =

Used  =

 

Number of observations of this category in the analysis

Number of observations that participated in the estimation (excludes observations in extreme scores)

%     =

Percent of the Used responses which are in this category.

Cum. % =

Cumulative percentage of responses in this category and lower.

FIT =

Information regarding validity of the data.

Avge Meas =

The average of the measures that are modeled to generate the observations in this category. If Avge Measure does not increase with category score, then the measure is flagged with a "*", and doubt is cast on the idea that larger response scores correspond to "more" of the variable.

Exp. Meas =

The expected value of the average measures. This provides guidance whether observations in a category are higher or lower than expected.

OUTFIT MnSq =

The unweighted mean-square for observations in this category. Mean-squares have expectation of 1.0. Values much larger than 1.0 indicate unexpected observations in this category. Central categories usually have smaller mean-squares than extreme categories. The INFIT MnSq is not reported because it approximates the OUTFIT MnSq when the data are stratified by category.

Obsd-Expd Diagnostic Residual =

score-point


difference between the observed count of responses and the expected count, based on the Rasch measures. This is shown only when it is greater than 0.5 score-points for some category. This can be due to
i) lack of convergence
ii) anchor values incompatible with the data
iii) responses do not match the specified scale structure, e.g., Poisson counts.

Response Category Name =

name of category from Rating (or partial credit) scale= specification

 

Dichotomies with anchored thresholds are reported as Table 8.1 Rating Scales

 

+----------------------------------------------------------------------------------------------------------+

|      DATA            |  QUALITY CONTROL  |RASCH-ANDRICH|  EXPECTATION  |  MOST  |  RASCH-  | Cat|Response|

| Category Counts  Cum.| Avge  Exp.  OUTFIT| Thresholds  |  Measure at   |PROBABLE| THURSTONE|PEAK|Category|

|Score   Used   %    % | Meas  Meas   MnSq |Measure  S.E.|Category  -0.5 |  from  |Thresholds|Prob|  Name  |

|----------------------+-------------------+-------------+---------------+--------+----------+----+--------|

|  0       27  79%  79%|  -.79   -.67   .6 |             |(   .87)       |   low  |   low    |100%| 0      |

|  1        7  21% 100%|  2.34   1.87   .3 |  2.00A      |(  3.07)   1.99|   2.00 |   1.99   |100%| 1      |

+----------------------------------------------------------------------------------------------------------+

 

Binomial Trials with Estimated Discrimination

 

This is generated by

Models=?,?,B22 where 22 is the number of trials. This estimates the binomial discrimination.

 

or

Models=?,?,Trials

Rating (or partial credit) scale=Trials,B22

0=Lowest category

*

 

The Binomial trials discrimination  parameterizes the binomial rating scale term in the model. The separate Rating Scale= specifies a scale discrimination. ai in the following model:

log(Pnik/Pnik-1) = Bn - Di - ai(log(k/(m-k+1)))

 

Table 8.2  Category Statistics.

 

Model = 22,?,-?,BB22

Rating (or partial credit) scale = BB22,B22,G,O

-------------------------------------------------------

|      DATA            |  QUALITY CONTROL  | Obsd-Expd|

| Category Counts  Cum.| Avge  Exp.  OUTFIT|Diagnostic|

|Score   Used   %    % | Meas  Meas   MnSq | Residual |

-------------------------------------------------------

|  4       .5   2%   2%|  -.60  -1.32  1.3 |          |

|  5       .5   2%   4%|  -.93* -1.95   .2 |      -.7 |

|  6      3.5  14%  18%|  -.81   -.33  1.6 |      2.0 |

....

| 15      1.5   6%  82%|   .76    .77   .3 |          |

| 16      3.5  14%  96%|   .81    .33  1.6 |      2.0 |

| 17       .5   2%  98%|   .93   1.95   .2 |      -.7 |

| 18       .5   2% 100%|   .60*  1.32  1.3 |          |

-------------------------------------------------------

Binomial trials discrimination:  1.03  S.E. .07

 

Binomial Trials with Fixed Discrimination

 

This is generated by

Models=?,?,Trials

Rating (or partial credit) scale=Trials,B22

0=0,1.0,A ; 1.0 is the anchored (pre-set, fixed) discrimination of the binomial scale

*

 

Table 8.2  Category Statistics.

 

Model = 22,?,-?,B22

-------------------------------------------------------

|      DATA            |  QUALITY CONTROL  | Obsd-Expd|

| Category Counts  Cum.| Avge  Exp.  OUTFIT|Diagnostic|

|Score   Used   %    % | Meas  Meas   MnSq | Residual |

-------------------------------------------------------

|  4       .5   2%   2%|  -.59  -1.31  1.2 |          |

|  5       .5   2%   4%|  -.91* -1.90   .2 |      -.7 |

....

| 17       .5   2%  98%|   .91   1.90   .2 |      -.7 |

| 18       .5   2% 100%|   .59*  1.31  1.2 |          |

-------------------------------------------------------

Binomial trials discrimination:  1.00  Anchored

 

Binomial trials discrimination: 1.00 Anchored
reports the discrimination of the numerical observations for binomial trials and Poisson counts, either pre-set (anchored) or with its S.E.

Discrimination is anchored, unless scale type is specified using Rating (or partial credit) scale=

 

Poisson Counts with Estimated Discrimination

 

Specify

Models=?,?,P

or

Models=?,?,Poisson

Rating (or partial credit) scale=Poisson,P

0 = Lowest

*

 

The separate Rating Scale= specifies a scale discrimination, ai, is to be estimated.

log(Pnik/Pnik-1) = Bn - Di - ai log(k)

 

Table 8.1  Category Statistics.

 

Model = ?B,?B,?,CHOPS

Rating (or partial credit) scale = CHOPS,P,G,O

-------------------------------------------------------

|      DATA            |  QUALITY CONTROL  | Obsd-Expd|

| Category Counts  Cum.| Avge  Exp.  OUTFIT|Diagnostic|

|Score   Used   %    % | Meas  Meas   MnSq | Residual |

-------------------------------------------------------

| 40        1   4%   4%|   .77    .14   .1 |       .8 |

| 41        0   0%   4%|                   |          |

| 42        0   0%   4%|                   |          |

| 43        1   4%   8%|   .79    .16   .0 |       .8 |

...

|133        0   0%  96%|                   |          |

|134        1   4% 100%|  1.02    .08  2.1 |       .9 |

-------------------------------------------------------

Poisson discrimination:   .21  S.E. .00

 

Poisson Counts with Fixed Discrimination

 

Specify

Models=?,?,Poisson

Rating (or partial credit) scale=Poisson,P

0=0,1.0,A ; 1.0 is the anchored (pre-set, fixed) discrimination of the Poisson scale

*

 

The separate Rating Scale= specifies a fixed Poisson scale discrimination.

log(Pnik/Pnik-1) = Bn - Di - log(k)

 

Table 8.1  Category Statistics.

 

Model = ?B,?B,?,P

-------------------------------------------------------

|      DATA            |  QUALITY CONTROL  | Obsd-Expd|

| Category Counts  Cum.| Avge  Exp.  OUTFIT|Diagnostic|

|Score   Used   %    % | Meas  Meas   MnSq | Residual |

-------------------------------------------------------

| 40        1   4%   4%|  3.64    .63   .8 |       .8 |

| 41        0   0%   4%|                   |          |

| 42        0   0%   4%|                   |          |

| 43        1   4%   8%|  3.77    .72   .0 |       .8 |

|.....

|133        0   0%  96%|                   |          |

|134        1   4% 100%|  4.81    .37  9.9 |       .9 |

-------------------------------------------------------

Poisson discrimination:  1.00  Anchored

 


Help for Facets (64-bit) Rasch Measurement and Rasch Analysis Software: www.winsteps.com Author: John Michael Linacre.
 

Facets Rasch measurement software. Buy for $149. & site licenses. Freeware student/evaluation Minifac download
Winsteps Rasch measurement software. Buy for $149. & site licenses. Freeware student/evaluation Ministep download

Rasch Books and Publications
Invariant Measurement: Using Rasch Models in the Social, Behavioral, and Health Sciences, 2nd Edn, 2024 George Engelhard, Jr. & Jue Wang Applying the Rasch Model (Winsteps, Facets) 4th Ed., Bond, Yan, Heene Advances in Rasch Analyses in the Human Sciences (Winsteps, Facets) 1st Ed., Boone, Staver Advances in Applications of Rasch Measurement in Science Education, X. Liu & W. J. Boone Rasch Analysis in the Human Sciences (Winsteps) Boone, Staver, Yale
Introduction to Many-Facet Rasch Measurement (Facets), Thomas Eckes Statistical Analyses for Language Testers (Facets), Rita Green Invariant Measurement with Raters and Rating Scales: Rasch Models for Rater-Mediated Assessments (Facets), George Engelhard, Jr. & Stefanie Wind Aplicação do Modelo de Rasch (Português), de Bond, Trevor G., Fox, Christine M Appliquer le modèle de Rasch: Défis et pistes de solution (Winsteps) E. Dionne, S. Béland
Exploring Rating Scale Functioning for Survey Research (R, Facets), Stefanie Wind Rasch Measurement: Applications, Khine Winsteps Tutorials - free
Facets Tutorials - free
Many-Facet Rasch Measurement (Facets) - free, J.M. Linacre Fairness, Justice and Language Assessment (Winsteps, Facets), McNamara, Knoch, Fan
Other Rasch-Related Resources: Rasch Measurement YouTube Channel
Rasch Measurement Transactions & Rasch Measurement research papers - free An Introduction to the Rasch Model with Examples in R (eRm, etc.), Debelak, Strobl, Zeigenfuse Rasch Measurement Theory Analysis in R, Wind, Hua Applying the Rasch Model in Social Sciences Using R, Lamprianou El modelo métrico de Rasch: Fundamentación, implementación e interpretación de la medida en ciencias sociales (Spanish Edition), Manuel González-Montesinos M.
Rasch Models: Foundations, Recent Developments, and Applications, Fischer & Molenaar Probabilistic Models for Some Intelligence and Attainment Tests, Georg Rasch Rasch Models for Measurement, David Andrich Constructing Measures, Mark Wilson Best Test Design - free, Wright & Stone
Rating Scale Analysis - free, Wright & Masters
Virtual Standard Setting: Setting Cut Scores, Charalambos Kollias Diseño de Mejores Pruebas - free, Spanish Best Test Design A Course in Rasch Measurement Theory, Andrich, Marais Rasch Models in Health, Christensen, Kreiner, Mesba Multivariate and Mixture Distribution Rasch Models, von Davier, Carstensen
As an Amazon Associate I earn from qualifying purchases. This does not change what you pay.

facebook Forum: Rasch Measurement Forum to discuss any Rasch-related topic

To receive News Emails about Winsteps and Facets by subscribing to the Winsteps.com email list,
enter your email address here:

I want to Subscribe: & click below
I want to Unsubscribe: & click below

Please set your SPAM filter to accept emails from Winsteps.com
The Winsteps.com email list is only used to email information about Winsteps, Facets and associated Rasch Measurement activities. Your email address is not shared with third-parties. Every email sent from the list includes the option to unsubscribe.

Questions, Suggestions? Want to update Winsteps or Facets? Please email Mike Linacre, author of Winsteps mike@winsteps.com


State-of-the-art : single-user and site licenses : free student/evaluation versions : download immediately : instructional PDFs : user forum : assistance by email : bugs fixed fast : free update eligibility : backwards compatible : money back if not satisfied
 
Rasch, Winsteps, Facets online Tutorials

Coming Rasch-related Events
Jan. 17 - Feb. 21, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
Feb. - June, 2025 On-line course: Introduction to Classical Test and Rasch Measurement Theories (D. Andrich, I. Marais, RUMM2030), University of Western Australia
Feb. - June, 2025 On-line course: Advanced Course in Rasch Measurement Theory (D. Andrich, I. Marais, RUMM2030), University of Western Australia
Apr. 21 - 22, 2025, Mon.-Tue. International Objective Measurement Workshop (IOMW) - Boulder, CO, www.iomw.net
May 16 - June 20, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
June 20 - July 18, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Further Topics (E. Smith, Facets), www.statistics.com
Oct. 3 - Nov. 7, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com

 

Our current URL is www.winsteps.com

Winsteps® is a registered trademark