Table 7.1 Person misfitting responses

(controlled by FITP=, LINELENGTH=, MNSQ=, OUTFIT=, T7OPTIONS=)

 

These tables show the persons or items for which the t standardized outfit (or infit, if OUTFIT=N) statistic is greater than the misfit criterion (FITP=). FITP=-10 with MNSQ=No displays all persons. Persons are listed in descending order of misfit. The response codes are listed in their sequence order in your data file. The residuals are standardized response score residuals, which have a model led expectation of 0, and a variance of 1. Negative residuals indicate that the observed response was less correct (or, for rating (or partial credit) scales, lower down the rating scale) than expected. The printed standardized residual is truncated, not rounded, so that its actual value is at least as extreme as that shown. Standardized residuals between -1 and 1 are not printed. For exact details, see XFILE=. "M" indicates a missing response.

 

"X" indicates that the item obtained an extreme score."X" in Tables 7.1 and 11.1 indicates that the observation is part of an extreme score, and so does not have a standardized residual.  All residuals for extreme scores are conceptually zero. Persons with "X" in Item Table 11.1 (because they have extreme scores) do not appear in Table 7.1, and vice-versa, because those extreme persons and items are not part of the misfit process. Basically "X" says "this observation is excluded from the misfit computation".

 

For Table 7, the diagnosis of misfitting persons, persons with a t standardized fit greater than FITP= are reported. Selection is based on the OUTFIT statistic, unless you set OUTFIT=N in which case the INFIT statistic is used.

 

 TABLE OF POORLY FITTING PERSONS     (ITEMS IN ENTRY ORDER)

 NUMBER   NAME    POSITION        MEASURE   INFIT (ZSTD) OUTFIT   MISFIT OVER 2.0

 

   23 GEORGE                        2.00     5.8   A    8.1

       RESPONSE:    1:  0 2 1 1 1  2 2 0 2 0   0 1 0 1 1  0 1 0 0 0   0 1 1 0 0

     Z-RESIDUAL:          X     2  3     3       2

 

       RESPONSE:   26:  1 2 0 2 1  M 0 0 1 1   1 0 1 0 0  1 0 0 0 0   0 0 0 2 1

     Z-RESIDUAL:          3   6 2                        -2      -2         4

 

                                                   / This letter on fit plots

    5 MARY                          2.21     5.2   B    6.5

       RESPONSE:    1:  1 2 0 0 1  2 0 0 1 0   0 2 0 0 1  1 0 0 0 0   0 1 1 0 1

     Z-RESIDUAL:          X     2  4             6         -2

 

Example: Table 7.1 with T7OPTIONS = OERZ  in an analysis of Example0.txt:

 

TABLE OF POORLY FITTING KID   (ACT IN ENTRY ORDER)

NUMBER - NAME -- POSITION ------ MEASURE - INFIT (MNSQ) OUTFIT

 

     72  M Jackson, Solomon        -1.32     2.0   A    5.2

  OBSERVED:      1:  1    0    0    1    0     0    0    1    0    0    <- T7OPTIONS= O

  EXPECTED:          0.6  0.7  0.3  0.1  0.1   0.4  0.2  0.1  0.3  1.1  <- T7OPTIONS= E

  RESIDUAL:          0.4 -0.7 -0.3  0.9 -0.1  -0.4 -0.2  0.9 -0.3 -1.1  <- T7OPTIONS= R

Z-RESIDUAL:                         2                    2              <- T7OPTIONS= Z

 

The OBSERVED value is the scored response, before recounting due to STKEEP=No, if any.

The EXPECTED value is the OBSERVED value - RESIDUAL value.


Help for Winsteps Rasch Measurement and Rasch Analysis Software: www.winsteps.com. Author: John Michael Linacre

Facets Rasch measurement software. Buy for $149. & site licenses. Freeware student/evaluation Minifac download
Winsteps Rasch measurement software. Buy for $149. & site licenses. Freeware student/evaluation Ministep download

Rasch Books and Publications
Invariant Measurement: Using Rasch Models in the Social, Behavioral, and Health Sciences, 2nd Edn, 2024 George Engelhard, Jr. & Jue Wang Applying the Rasch Model (Winsteps, Facets) 4th Ed., Bond, Yan, Heene Advances in Rasch Analyses in the Human Sciences (Winsteps, Facets) 1st Ed., Boone, Staver Advances in Applications of Rasch Measurement in Science Education, X. Liu & W. J. Boone Rasch Analysis in the Human Sciences (Winsteps) Boone, Staver, Yale
Introduction to Many-Facet Rasch Measurement (Facets), Thomas Eckes Statistical Analyses for Language Testers (Facets), Rita Green Invariant Measurement with Raters and Rating Scales: Rasch Models for Rater-Mediated Assessments (Facets), George Engelhard, Jr. & Stefanie Wind Aplicação do Modelo de Rasch (Português), de Bond, Trevor G., Fox, Christine M Appliquer le modèle de Rasch: Défis et pistes de solution (Winsteps) E. Dionne, S. Béland
Exploring Rating Scale Functioning for Survey Research (R, Facets), Stefanie Wind Rasch Measurement: Applications, Khine Winsteps Tutorials - free
Facets Tutorials - free
Many-Facet Rasch Measurement (Facets) - free, J.M. Linacre Fairness, Justice and Language Assessment (Winsteps, Facets), McNamara, Knoch, Fan
Other Rasch-Related Resources: Rasch Measurement YouTube Channel
Rasch Measurement Transactions & Rasch Measurement research papers - free An Introduction to the Rasch Model with Examples in R (eRm, etc.), Debelak, Strobl, Zeigenfuse Rasch Measurement Theory Analysis in R, Wind, Hua Applying the Rasch Model in Social Sciences Using R, Lamprianou El modelo métrico de Rasch: Fundamentación, implementación e interpretación de la medida en ciencias sociales (Spanish Edition), Manuel González-Montesinos M.
Rasch Models: Foundations, Recent Developments, and Applications, Fischer & Molenaar Probabilistic Models for Some Intelligence and Attainment Tests, Georg Rasch Rasch Models for Measurement, David Andrich Constructing Measures, Mark Wilson Best Test Design - free, Wright & Stone
Rating Scale Analysis - free, Wright & Masters
Virtual Standard Setting: Setting Cut Scores, Charalambos Kollias Diseño de Mejores Pruebas - free, Spanish Best Test Design A Course in Rasch Measurement Theory, Andrich, Marais Rasch Models in Health, Christensen, Kreiner, Mesba Multivariate and Mixture Distribution Rasch Models, von Davier, Carstensen
As an Amazon Associate I earn from qualifying purchases. This does not change what you pay.

facebook Forum: Rasch Measurement Forum to discuss any Rasch-related topic

To receive News Emails about Winsteps and Facets by subscribing to the Winsteps.com email list,
enter your email address here:

I want to Subscribe: & click below
I want to Unsubscribe: & click below

Please set your SPAM filter to accept emails from Winsteps.com
The Winsteps.com email list is only used to email information about Winsteps, Facets and associated Rasch Measurement activities. Your email address is not shared with third-parties. Every email sent from the list includes the option to unsubscribe.

Questions, Suggestions? Want to update Winsteps or Facets? Please email Mike Linacre, author of Winsteps mike@winsteps.com


State-of-the-art : single-user and site licenses : free student/evaluation versions : download immediately : instructional PDFs : user forum : assistance by email : bugs fixed fast : free update eligibility : backwards compatible : money back if not satisfied
 
Rasch, Winsteps, Facets online Tutorials


 

 
Coming Rasch-related Events: Winsteps and Facets
Oct 21 - 22 2024, Mon.-Tues. In person workshop: Facets and Winsteps in expert judgement test validity - UNAM (México) y Universidad Católica de Colombia. capardo@ucatolica.edu.co, benildegar@gmail.com
Oct. 4 - Nov. 8, 2024, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
Jan. 17 - Feb. 21, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
May 16 - June 20, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
June 20 - July 18, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Further Topics (E. Smith, Facets), www.statistics.com
Oct. 3 - Nov. 7, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com

 

 

Our current URL is www.winsteps.com

Winsteps® is a registered trademark