R Statistics Rasch analysis software and Winsteps

Winsteps can import and export files compatible with the R Statistics package. Many of the R procedures below can be actioned directly from Winsteps menus by one click, not requiring any knowledge of how to operate R.

 

The freeware R statistics package can be downloaded from www.r-project.org. Paul Murrell has posted useful instructional material online: https://www.stat.auckland.ac.nz/~paul/ - especially good for graphing.

 


Launching Winsteps from R Statistics

 

Data Cornering suggests this R command:

1. > system("cmd.exe", input = paste('C:\\This\\Is\\Path\\Your.bat'))  

2. Your.bat file is a Winsteps Batch= file

3. In the Winsteps control file in your.bat file, include TFILE= to output .txt and .rdata files for processing by R. Winsteps control and data files should be .txt files.

 


Winsteps calls to R statistics fail:

 

1. Check that file winsteps-zero.dat is in your c:\Winsteps folder along with Winsteps.exe

2. Close all open programs (apps). Go to your %temp% folder and delete all files that Windows will let you delete.

3. Launch R from its shortcut (not through Winsteps) and check that R operates correctly.

4. Launch R through Winsteps. Look at your %temp% folder. It should contain files winsteps-zero.rdata and .Rprofile

5. Check that  file extension .rdata is registered in Windows to R Statistics:

https://superuser.com/questions/1456106/windows-10-how-to-set-program-path-in-file-associations

 

R command

R's response

Meaning

ls()

[1] "IFILE"

list of loaded datasets

help(ls)

Help windows opens

help for "ls" command

names(IFILE)

[1] "ENTRY" "NAME"

names of variables in the dataset "IFILE"

IFILE

(contents of IFILE)

displays the data in the IFILE dataset

attach(IFILE)

-

IFILE variables active without $ reference

plot (x, y)

scatterplot displays

variable y is plotted against variable x

q()

(R terminates)

quit (exit from) R Statistics

Maximize your R Console window: edit your "Rconsole" file in "C:\Program Files\R\R-...\etc" from "# MDIsize = 0*0+0+0" to "MDIsize = 0*0+0+0"

 

An R package to interface with Winsteps is also available from CRAN: Rwinsteps (Albano and Babcock) - cran.r-project.org/web/packages/Rwinsteps/index.html

 

Action:

Screen:

Import R statistics data in a .rdata or .rda file.

 

 

Now follow the procedure at Excel/RSSST menu.

Export Winsteps output files as R statistics files: .rdata or ,rda

 

from the Output Files menu

IFILE=

PFILE=

IPMATRIX=

 

Code for missing data: NA is usually applied automatically

R Statistics screen

 

ls() at any time to see list of available objects, etc.

 

 

R functions

data[data=="."] <- NA # Convert missing data to NA (R Statistics missing data code)

Descriptive statistics

> install.packages('psych'')

> library (psych)

> des <- describe(data)

> print (des, digits=3)

  vars   n   mean    sd median trimmed   mad    min   max range   skew kurtosis    se  Q0.25 Q0.75

ZSCORE 476 -0.009 0.827  -0.01   0.006 0.304 -5.969 6.141 12.11 -0.985   21.018 0.038 -0.163  0.21 

Principal Components Analysis and

Factor analysis of standardized residuals

or other numbers

> install.packages('psych',''FactoMineR')

> library (psych)

> library (FactoMineR)

> result <- fa.parallel (data)

a Scree Plot displays of PCA and FA eigenvalues.

R Console window: "Parallel analysis suggests that the number of factors =  3"

Put 3 (or whatever) in the R "factors" instruction

 

Principal Components Analysis:

> pca <- PCA(data, graph=FALSE)

> pca$eig

> pca$var$coord

> head(pca$ind$coord)

 

Factor analysis:

> factors <- fa(data, 3)

> print (factors)

    the factor loadings are in columns MR1, MR2, ...

> plot(factors)

Simple plot with R

Winsteps Output Files menu: IFILE=, PFILE=. Output to R Statistics. In R Statistics:

 

res -> attach(IFILE)

res -> plot (IN.MSQ, OUT.MSQ)

3-D scatter plot

Use Winsteps Plots menu

 

Winsteps Output Files menu: IFILE=, PFILE=: Select any 3 variables, e.g. Measure, Infit MnSq, Outfit MnSQ. Output to R Statistics

In R Statistics:

> install.packages("scatterplot3d")

> library (scatterplot3d)

> res <- scatterplot3d(IFILE)

 

 

Mokken scaling:

Loevinger H Coefficient

Output files menu: IPMATRIX=

scored responses, no extreme scores. no person entry numbers, missing data = NA

OK

then when R displays:

install.packages("mokken")

library(mokken)

coefH(data)

Exploratory Factor Analysis (PCA) Functions for Assessing Dimensionality

Output files menu: IPMATRIX=

standardized residuals, no extreme scores, no person entry numbers, missing data = 0

install.packages("remotes")

remotes::install_github("bpoconnor/paramap")

library(paramap)

MAP(data)

CMLE Conditional Maximum Likelihood Estimation: Dichotomous

 

Output files menu: IPMATRIX=

scored responses, no extreme scores. no person entry numbers, missing data = NA

> install.packages("eRm")

> library(eRm)

# activate eRm

> res <- RM(data)  # CMLE estimation of item easinesses for dichotomies

                                         # RSM() and PCM() for polytomies

> coef(res)  # or  summary(res)  # report the items

> pres <- person.parameter(res)   # AMLE estimation of person abilities (thetas)

> coef(pres)  # or summary(pres)  # report the person estimates

> LRtest(res, splitcr = "median", se = TRUE) # Andersen's Likelihood Ratio Test (LRT)

also

> install.packages("RM.weights")

> library (RM.weights)

> res <- RM.w(data, .w = NULL, .d=NULL, country=NULL, se.control = TRUE,

quantile.seq = NULL, write.file = FALSE, max.it=100)    # dichotomies

res <- PC.w(data, wt=NULL, extr=NULL, maxiter=100,minconv=.00001,country=NULL, write.file=FALSE, recode = 0, write.iteration=FALSE) # partial credit

ERMA (Everyone's Rasch Measurement Analyzer)

> install.packages("shiny")

> library(shiny)

> runGitHub("ShinyERMA", "RaschModel")

Jue Wang (University of Miami) and George Engelhard Jr. (University of Georgia)

JMLE Joint Maximum Likelihood Estimation: TAM

Output files menu: IPMATRIX=

scored responses start from zero, no extreme item scores. no person entry numbers, missing data = NA

> install.packages("TAM")

> library(TAM)  # activate ltm

> res <- tam.jml(data)

> summary(res)  # report the items

MMLE Marginal Maximum Likelihood Estimation:

Dichotomous

Output files menu: IPMATRIX=

scored responses, no extreme item scores. no person entry numbers, missing data = NA

> install.packages("ltm")

> library(ltm)  # activate ltm

> res <- rasch(data =data, constraint = cbind(ncol(data) + 1, 1))

> coef(res)  # or  summary(res)  # report the items

Generalized Partial Credit Model:

> res <- gpcm(data, constraint = c("gpcm", "1PL", "rasch"), IRT.param = TRUE,

start.val = NULL, na.action = NULL, control = list())

MMLE Marginal Maximum Likelihood Estimation:

Dichotomous

Polytomous, Rating Scale

Output files menu: IPMATRIX=

scored responses start from zero, no extreme item scores. no person entry numbers, missing data = NA

> install.packages("TAM")

> library(TAM)  # activate TAM

> res <- TAM::tam.mml( data, irtmodel="1PL" ) # dichotomous

> res <- TAM::tam.mml( data, irtmodel="RSM" )

>summary(res)  # report the items and thresholds

>pers <- tam.mml.wle( res, score.resp=NULL, WLE=FALSE, adj=.3) # compute AMLE person thetas

pers$theta # list the thetas

PMLE Pair-wise Maximum Likelihood Estimation: dichotomous

Output files menu: IPMATRIX=

scored responses, no extreme scores. no person entry numbers, missing data = NA

> install.packages("pairwise")

> library(pairwise)  # activate pairwise

> res <- pair(data)

> summary(res)

and

> install.packages("sirt")

> library("sirt")

> res <- rasch.pairwise(data)

> summary(res)

other Rasch packages

> install.packages("mixRasch")

> install.packages("pcIRT")

>install.packages('mirt')

> res <- mirt (data, 1, 'Rasch') # for dichotomous and partial credit analysis

Wright Map

Use Winsteps Plots menu

Receiver Operating Curve

Area Under the Curve

ROC AUC

install.packages("PRROC")

library(PRROC)

res <- roc.curve(scores.class0 = XFILE$EXPECTATION, weights.class0=XFILE$ORDERED,curve=TRUE)

plot(res)

R Graphics

ggplot2

Use Winsteps Graph window or

> install.packages("ggplot2")

> library(ggplot2)

if this fails, then

> remove.packages("ggplot2")

then try again

> data (diamonds)

? ggplot(diamonds, aes(x=carat, y=price))

Cluster Analysis with complete data

install.packages ("pvclust")

library(pvclust)

data <- scale(data)

fit <- pvclust(data, method.hclust="ward.D2",    method.dist="euclidean")

plot(fit) # dendogram with p values

pvrect(fit, alpha=.95) # red boxes around significantly different clusters

Generalizability Theory

> remove.packages("Matrix")

> install.packages("Matrix")

> install.packages("gtheory")

> library(Matrix)

> library(gtheory)

 

 

#A univariate D study.

#Compare to results on page 116 of Brennan (2001).

data(Brennan.3.2)

formula.Brennan.3.2 <- "Score ~ (1 | Person) + (1 | Task) + (1 | Rater:Task) +

(1 | Person:Task)"

gstudy.out <- gstudy(data = Brennan.3.2, formula = formula.Brennan.3.2)

dstudy(gstudy.out, colname.objects = "Person", data = Brennan.3.2, colname.scores = "Score")

#A multivariate D study.

#Compare to results on pages 270-272 of Brennan (2001).

data(Rajaratnam.2)

formula.Rajaratnam.2 <- "Score ~ (1 | Person) + (1 | Item)"

gstudy.out <- gstudy(data = Rajaratnam.2, formula = formula.Rajaratnam.2,

colname.strata = "Subtest", colname.objects = "Person")

dstudy(gstudy.out, colname.objects = "Person", data = Rajaratnam.2, colname.scores = "Score",

colname.strata = "Subtest", weights = c(0.25, 0.5, 0.25))

Reading SAS file

> install.packages("haven")

> library(haven)

>  read_sas("c:/winsteps/examples/sastest.sas7bdat")

Reading Excel file

install.packages("readxl")

# Loading

library("readxl")

# xls files

my_data <- read_excel("my_file.xls")

write.table(my_data, file = "c:/filename.txt", sep = "\t", quote = FALSE)

Mokken scaling

Loevinger H Coefficient

install.packages("mokken")

library(mokken)

 

# no missing values: rating scales allowed

# Partition the the scale into mokken scales

aisp(data)

 

# Investigate the assumption of monotonicity

monotonicity.list <- check.monotonicity(data)

summary(monotonicity.list)

# plot(monotonicity.list)

# Investigate the assumption of non-intersecting ISRFs using method restscore

restscore.list <- check.restscore(data)

summary(restscore.list)

# plot(restscore.list)

# Investigate the assumption of non-intersecting ISRFs using method pmatrix

# pmatrix.list <- check.pmatrix(data)

# summary(pmatrix.list)

# plot(pmatrix.list)

# Investigate the assumption of IIO using method MIIO

iio.list <- check.iio(data)

summary(iio.list)

# plot(iio.list)

# Compute the reliability of the scale

check.reliability(data)

DIF / DPF analysis

> install.packages("difR")

> library(difR)

 

DIF: start with mantelhaenszel

DPF: transpose your data: t()

then mantelhaenszel

Nonparametric Rasch Model Tests

install.packages("eRm")

library(eRm)

 

# no missing values: must be binary

rmat <- as.matrix(data)

 

# T1: Checks for local dependence via increased inter-item correlations. For all item pairs, cases are counted with equal responses on both items.

t1 <- NPtest(rmat, n = 100, method = "T1")

print(t1, alpha = 0.01)

print(t1, alpha = 0.05)

 

# T1m: Checks for multidimensionality via decreased inter-item correlations. For all item pairs, cases are counted with equal responses on both items.

t1m <- NPtest(rmat, n = 100, method = "T1m")

print(t1m, alpha = 0.01)

print(t1m, alpha = 0.05)

 

# T10: Global test for subgroup-invariance. Checks for different item difficulties in two subgroups

t101 <- NPtest(rmat, method = "T10") # default split criterion is "median"

t101

t102 <- NPtest(rmat, method = "T10", splitcr = "mean")

t102

 

# T11: Global test for local dependence. The statistic calculates the sum of absolute deviations between the observed inter-item correlations and the expected correlations

t11 <- NPtest(rmat, method = "T11")

t11

Fit Analysis "Aberrance"

install.packages("aberrance"))

library(aberrance)

 

Latent Class Analysis LCA

install.packages("poLCA")

library(poLCA)

# observations must start at 1

data <- data+1

f <- cbind(X1,X2)~1

p <- loPCA(f, data, nclass=2)

# results difficult to interpret at the variable (item) level

Latent Profile Analysis LPA

library(tidyLPA)

library(dplyr)

data  %>%  estimate_profiles(n_profiles = 1:2, models = 1:2) %>% plot_profiles()

Note: AIC, BIC - the lower the better.

difR: Collection of Methods to Detect Dichotomous Differential Item Functioning (DIF)

install.packages("difR")

library(difR)


Help for Winsteps Rasch Measurement and Rasch Analysis Software: www.winsteps.com. Author: John Michael Linacre

Facets Rasch measurement software. Buy for $149. & site licenses. Freeware student/evaluation Minifac download
Winsteps Rasch measurement software. Buy for $149. & site licenses. Freeware student/evaluation Ministep download

Rasch Books and Publications
Invariant Measurement: Using Rasch Models in the Social, Behavioral, and Health Sciences, 2nd Edn, 2024 George Engelhard, Jr. & Jue Wang Applying the Rasch Model (Winsteps, Facets) 4th Ed., Bond, Yan, Heene Advances in Rasch Analyses in the Human Sciences (Winsteps, Facets) 1st Ed., Boone, Staver Advances in Applications of Rasch Measurement in Science Education, X. Liu & W. J. Boone Rasch Analysis in the Human Sciences (Winsteps) Boone, Staver, Yale
Introduction to Many-Facet Rasch Measurement (Facets), Thomas Eckes Statistical Analyses for Language Testers (Facets), Rita Green Invariant Measurement with Raters and Rating Scales: Rasch Models for Rater-Mediated Assessments (Facets), George Engelhard, Jr. & Stefanie Wind Aplicação do Modelo de Rasch (Português), de Bond, Trevor G., Fox, Christine M Appliquer le modèle de Rasch: Défis et pistes de solution (Winsteps) E. Dionne, S. Béland
Exploring Rating Scale Functioning for Survey Research (R, Facets), Stefanie Wind Rasch Measurement: Applications, Khine Winsteps Tutorials - free
Facets Tutorials - free
Many-Facet Rasch Measurement (Facets) - free, J.M. Linacre Fairness, Justice and Language Assessment (Winsteps, Facets), McNamara, Knoch, Fan
Other Rasch-Related Resources: Rasch Measurement YouTube Channel
Rasch Measurement Transactions & Rasch Measurement research papers - free An Introduction to the Rasch Model with Examples in R (eRm, etc.), Debelak, Strobl, Zeigenfuse Rasch Measurement Theory Analysis in R, Wind, Hua Applying the Rasch Model in Social Sciences Using R, Lamprianou El modelo métrico de Rasch: Fundamentación, implementación e interpretación de la medida en ciencias sociales (Spanish Edition), Manuel González-Montesinos M.
Rasch Models: Foundations, Recent Developments, and Applications, Fischer & Molenaar Probabilistic Models for Some Intelligence and Attainment Tests, Georg Rasch Rasch Models for Measurement, David Andrich Constructing Measures, Mark Wilson Best Test Design - free, Wright & Stone
Rating Scale Analysis - free, Wright & Masters
Virtual Standard Setting: Setting Cut Scores, Charalambos Kollias Diseño de Mejores Pruebas - free, Spanish Best Test Design A Course in Rasch Measurement Theory, Andrich, Marais Rasch Models in Health, Christensen, Kreiner, Mesba Multivariate and Mixture Distribution Rasch Models, von Davier, Carstensen
As an Amazon Associate I earn from qualifying purchases. This does not change what you pay.

facebook Forum: Rasch Measurement Forum to discuss any Rasch-related topic

To receive News Emails about Winsteps and Facets by subscribing to the Winsteps.com email list,
enter your email address here:

I want to Subscribe: & click below
I want to Unsubscribe: & click below

Please set your SPAM filter to accept emails from Winsteps.com
The Winsteps.com email list is only used to email information about Winsteps, Facets and associated Rasch Measurement activities. Your email address is not shared with third-parties. Every email sent from the list includes the option to unsubscribe.

Questions, Suggestions? Want to update Winsteps or Facets? Please email Mike Linacre, author of Winsteps mike@winsteps.com


State-of-the-art : single-user and site licenses : free student/evaluation versions : download immediately : instructional PDFs : user forum : assistance by email : bugs fixed fast : free update eligibility : backwards compatible : money back if not satisfied
 
Rasch, Winsteps, Facets online Tutorials


 

 
Coming Rasch-related Events: Winsteps and Facets
Oct 21 - 22 2024, Mon.-Tues. In person workshop: Facets and Winsteps in expert judgement test validity - UNAM (México) y Universidad Católica de Colombia. capardo@ucatolica.edu.co, benildegar@gmail.com
Oct. 4 - Nov. 8, 2024, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
Jan. 17 - Feb. 21, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
May 16 - June 20, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
June 20 - July 18, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Further Topics (E. Smith, Facets), www.statistics.com
Oct. 3 - Nov. 7, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com

 

 

Our current URL is www.winsteps.com

Winsteps® is a registered trademark