CMLE, MMLE, PMLE: Using estimates from other software in Winsteps

Winsteps does Joint Maximum Likelihood Estimation (JMLE) and Conditional Maximum Likelihood Estimation (CMLE) with CMLE=Yes. As with all estimation methods, JMLE has strengths and weaknesses. You may prefer CMLE  (eRm R Statistics), MMLE (ConQuest), PMLE (RUMM2030) or other estimates, but you also want the comprehensive analysis and reporting features of Winsteps. Here is what to do:

 

1) Analyze your data with the other software. It may be convenient to pre-process it with Winsteps, then output an RFILE= or IPMATRIX= for analysis by the other software.

 

2) From the other software, output the item difficulties (deltas), person abilities (thetas) and, for polytomies, the Andrich thresholds (taus).

 

3) Anchor the estimates for Winsteps. Format the item difficulties as an IAFILE= anchor text file, the person abilities as a PAFILE= and the thresholds as an SAFILE=.

 

4) Analyze your data with Winsteps using those anchor files. All the analysis and reporting features of Winsteps are available.

 

Example: CMLE using R Statistics eRm package (Patrick Mair, et al.)

 

Winsteps control and data file

Item (delta) JMLE estimates

Person (theta) JMLE estimates

title=4x4

ni=4

name1=1

item1=1

codes=01

&END

END LABELS

1000

0110

0111

0011

------------------------------

|ENTRY   TOTAL  TOTAL         

|NUMBER  SCORE  COUNT  MEASURE

|-----------------------------

|     1      1      4    1.26 

|     2      2      4     .00 

|     3      3      4   -1.26 

|     4      2      4     .00 

------------------------------

|ENTRY   TOTAL  TOTAL         

|NUMBER  SCORE  COUNT  MEASURE

|-----------------------------

|     1      1      4   -1.25 

|     2      2      4     .00 

|     3      3      4    1.26 

|     4      2      4     .00 

Data are symmetric

Estimates are symmetric

Range of JMLE delta estimates = 2.52 logits

Range of JMLE theta estimates = 2.51 logits

 

eRm data file

Item (delta) CMLE (eRm)

Person (theta) AMLE (eRm)

  X1 X2 X3 X4

1  1  0  0  0

2  0  1  1  0

3  0  1  1  1

4  0  0  1  1

        Estimate

delta X1    0.955

delta X2    0.000

delta X3   -0.955

delta X4    0.000

            Estimate

theta P1  -1.208

theta P2   0.000

theta P3   1.208

theta P4   0.000

Data are symmetric

Estimates are asymmetric

Range of CMLE delta estimates = 1.91 logits

JMLE bias correction = 1.91/2.52 = 0.76

predicted bias correction = (4-1)/4 = 0.75

Range of AMLE theta estimates = 2.42 logits

Almost the same as the JMLE estimates

AMLE = Anchored Maximum Likelihood Estimation

Response probabilities:

 

CMLE probabilities are almost symmetric

 

AMLE probabilities are obviously biased. The item totals are wrong.

at end of the item CMLE computation


X1

X2

X3

X4

Total

P1

0.077

0.201

0.521

0.201

1.000

P2

0.222

0.500

0.778

0.500

2.000

P3

0.479

0.799

0.923

0.799

3.000

P4

0.222

0.500

0.778

0.500

2.000

Total

1.000

2.000

3.000

2.000


 

after AMLE computation (eRm)


X1

X2

X3

X4

Total

P1

0.10

0.23

0.44

0.23

1.00

P2

0.28

0.50

0.72

0.50

2.00

P3

0.56

0.77

0.90

0.77

3.00

P4

0.28

0.50

0.72

0.50

2.00

Total

1.22

2.00

2.78

2.00


 

For comparison,

from the JMLE estimation - IPMATRIX= expected response values

 

CMLE probabilities are close to JMLE probabilities

from JMLE computation


X1

X2

X3

X4

Total

P1

0.075

0.222

0.501

0.222

1.000

P2

0.222

0.500

0.778

0.500

2.000

P3

0.501

0.778

0.925

0.778

3.000

P4

0.222

0.500

0.778

0.500

2.000

Total

1.000

2.000

3.000

2.000


 

Person (theta) CMLE estimates

obtained by

1) transpose the data

2) perform item CMLE computation

3) in this example, the delta and theta estimates are the same.

Quasi-CMLE estimates from JMLE probabilities

For dichotomous data, CMLE item (delta) estimates can be deduced from the CMLE item probabilities for a person with score 1.

 

Since JMLE probabilities are close to CMLE item probabiities, approximate item deltas, QCMLE estimates, can be calculated from JMLE probabilities

For dichotomous data, CMLE person (theta) estimates can be deduced from the CMLE person probabilities for an item with score 1.

 

Since JMLE probabilities are close to CMLE person probabiities, approximate person thetas, QCMLE estimates, can be calculated from JMLE probabilities

 

 

How to do this example with Winsteps and R Statistics, eRm package:

 

With Winsteps control file:

 

title=4x4

ni=4

name1=1

item1=1

codes=01

lconv=.0001

rconv=.0001

converge=b

&END

END LABELS

1000

0110

0111

0011

 

after the analysis phase:

Output Files menu: IPMATRIX=.

Options:

3. Response value after scoring

Uncheck "Also include Person Entry Number"

Uncheck "Include extreme persons"

Uncheck "Include extreme items"

Click on OK

Output File Specifications::

R Statistics

Temporary

OK

 

R Statistics window opens:

 

"data" dataset is loaded, see ls()

[Previously saved workspace restored]

 

>data       #  let's see what the data look like in R

  X1 X2 X3 X4

1  1  1  1  0

2  1  1  0  0

3  1  0  0  0

4  0  0  0  1

 

> require("eRm")  # install eRm if not already installed

> library(eRm)  # activate eRm

> res <- RM(data)  # CMLE estimation of item easinesses for dichotomies

                                         # RSM() and PCM() for polytomies

> coef(res)  # or  summary(res)  # report the items

      beta X1       beta X2       beta X3       beta X4 

-9.550007e-01 -2.322257e-07  9.550012e-01 -2.314972e-07 

> pres <- person.parameter(res)   # AMLE estimation of person abilities (thetas)

> coef(pres)  # or summary(pres)  # report the person estimates

           P1            P2            P3            P4 

-1.208460e+00 -4.741322e-07  1.208459e+00 -4.741322e-07 

 

 

Then use these values as anchor values in a Winsteps analysis:

IAFILE=*

1   0.955  ; item difficulty is -item easiness

2   0.000

3  -0.955

4   0.000

*

PAFILE=

1  -1.208

2   0.000

3   1.208

4   0.000

*

 

For true CMLE ability estimates, transpose the data:

> transp <- t(data)

> theta <- RM(transp)  # CMLE estimation of person abilities

> coef(theta)


Help for Winsteps Rasch Measurement and Rasch Analysis Software: www.winsteps.com. Author: John Michael Linacre

Facets Rasch measurement software. Buy for $149. & site licenses. Freeware student/evaluation Minifac download
Winsteps Rasch measurement software. Buy for $149. & site licenses. Freeware student/evaluation Ministep download

Rasch Books and Publications
Invariant Measurement: Using Rasch Models in the Social, Behavioral, and Health Sciences, 2nd Edn, 2024 George Engelhard, Jr. & Jue Wang Applying the Rasch Model (Winsteps, Facets) 4th Ed., Bond, Yan, Heene Advances in Rasch Analyses in the Human Sciences (Winsteps, Facets) 1st Ed., Boone, Staver Advances in Applications of Rasch Measurement in Science Education, X. Liu & W. J. Boone Rasch Analysis in the Human Sciences (Winsteps) Boone, Staver, Yale
Introduction to Many-Facet Rasch Measurement (Facets), Thomas Eckes Statistical Analyses for Language Testers (Facets), Rita Green Invariant Measurement with Raters and Rating Scales: Rasch Models for Rater-Mediated Assessments (Facets), George Engelhard, Jr. & Stefanie Wind Aplicação do Modelo de Rasch (Português), de Bond, Trevor G., Fox, Christine M Appliquer le modèle de Rasch: Défis et pistes de solution (Winsteps) E. Dionne, S. Béland
Exploring Rating Scale Functioning for Survey Research (R, Facets), Stefanie Wind Rasch Measurement: Applications, Khine Winsteps Tutorials - free
Facets Tutorials - free
Many-Facet Rasch Measurement (Facets) - free, J.M. Linacre Fairness, Justice and Language Assessment (Winsteps, Facets), McNamara, Knoch, Fan
Other Rasch-Related Resources: Rasch Measurement YouTube Channel
Rasch Measurement Transactions & Rasch Measurement research papers - free An Introduction to the Rasch Model with Examples in R (eRm, etc.), Debelak, Strobl, Zeigenfuse Rasch Measurement Theory Analysis in R, Wind, Hua Applying the Rasch Model in Social Sciences Using R, Lamprianou El modelo métrico de Rasch: Fundamentación, implementación e interpretación de la medida en ciencias sociales (Spanish Edition), Manuel González-Montesinos M.
Rasch Models: Foundations, Recent Developments, and Applications, Fischer & Molenaar Probabilistic Models for Some Intelligence and Attainment Tests, Georg Rasch Rasch Models for Measurement, David Andrich Constructing Measures, Mark Wilson Best Test Design - free, Wright & Stone
Rating Scale Analysis - free, Wright & Masters
Virtual Standard Setting: Setting Cut Scores, Charalambos Kollias Diseño de Mejores Pruebas - free, Spanish Best Test Design A Course in Rasch Measurement Theory, Andrich, Marais Rasch Models in Health, Christensen, Kreiner, Mesba Multivariate and Mixture Distribution Rasch Models, von Davier, Carstensen
As an Amazon Associate I earn from qualifying purchases. This does not change what you pay.

facebook Forum: Rasch Measurement Forum to discuss any Rasch-related topic

To receive News Emails about Winsteps and Facets by subscribing to the Winsteps.com email list,
enter your email address here:

I want to Subscribe: & click below
I want to Unsubscribe: & click below

Please set your SPAM filter to accept emails from Winsteps.com
The Winsteps.com email list is only used to email information about Winsteps, Facets and associated Rasch Measurement activities. Your email address is not shared with third-parties. Every email sent from the list includes the option to unsubscribe.

Questions, Suggestions? Want to update Winsteps or Facets? Please email Mike Linacre, author of Winsteps mike@winsteps.com


State-of-the-art : single-user and site licenses : free student/evaluation versions : download immediately : instructional PDFs : user forum : assistance by email : bugs fixed fast : free update eligibility : backwards compatible : money back if not satisfied
 
Rasch, Winsteps, Facets online Tutorials


 

 
Coming Rasch-related Events
Jan. 17 - Feb. 21, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
Feb. - June, 2025 On-line course: Introduction to Classical Test and Rasch Measurement Theories (D. Andrich, I. Marais, RUMM2030), University of Western Australia
Feb. - June, 2025 On-line course: Advanced Course in Rasch Measurement Theory (D. Andrich, I. Marais, RUMM2030), University of Western Australia
Apr. 21 - 22, 2025, Mon.-Tue. International Objective Measurement Workshop (IOMW) - Boulder, CO, www.iomw.net
May 16 - June 20, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
June 20 - July 18, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Further Topics (E. Smith, Facets), www.statistics.com
Oct. 3 - Nov. 7, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com

 

 

Our current URL is www.winsteps.com

Winsteps® is a registered trademark