Biserial correlation |
If the sample is normally distributed (i.e., conditions for the computation of the biserial exist), then to obtain the biserial correlation from the point-biserial for dichotomous data:
Biserial = Point-biserial * f(proportion-correct-value)
Example: Specify PTBISERIAL=Yes and PVALUE=Yes. Display Table 14.
Point-biserial = .65. proportion-correct-value = .77. Then, from the Table below, f(proportion-correct-value) = 1.3861, so Biserial correlation = .65 * 1.39 = 0.90
Here is the Table of proportion-correct-value and f(proportion-correct-value).
p-va f(p-val) p-va f(p-val)
0.99 3.7335 0.01 3.7335
0.98 2.8914 0.02 2.8914
0.97 2.5072 0.03 2.5072
0.96 2.2741 0.04 2.2741
0.95 2.1139 0.05 2.1139
0.94 1.9940 0.06 1.9940
0.93 1.8998 0.07 1.8998
0.92 1.8244 0.08 1.8244
0.91 1.7622 0.09 1.7622
0.90 1.7094 0.10 1.7094
0.89 1.6643 0.11 1.6643
0.88 1.6248 0.12 1.6248
0.87 1.5901 0.13 1.5901
0.86 1.5588 0.14 1.5588
0.85 1.5312 0.15 1.5312
0.84 1.5068 0.16 1.5068
0.83 1.4841 0.17 1.4841
0.82 1.4641 0.18 1.4641
0.81 1.4455 0.19 1.4455
0.80 1.4286 0.20 1.4286
0.79 1.4133 0.21 1.4133
0.78 1.3990 0.22 1.3990
0.77 1.3861 0.23 1.3861
0.76 1.3737 0.24 1.3737
0.75 1.3625 0.25 1.3625
0.74 1.3521 0.26 1.3521
0.73 1.3429 0.27 1.3429
0.72 1.3339 0.28 1.3339
0.71 1.3256 0.29 1.3256
0.70 1.3180 0.30 1.3180
0.69 1.3109 0.31 1.3109
0.68 1.3045 0.32 1.3045
0.67 1.2986 0.33 1.2986
0.66 1.2929 0.34 1.2929
0.65 1.2877 0.35 1.2877
0.64 1.2831 0.36 1.2831
0.63 1.2786 0.37 1.2786
0.62 1.2746 0.38 1.2746
0.61 1.2712 0.39 1.2712
0.60 1.2682 0.40 1.2682
0.59 1.2650 0.41 1.2650
0.58 1.2626 0.42 1.2626
0.57 1.2604 0.43 1.2604
0.56 1.2586 0.44 1.2586
0.55 1.2569 0.45 1.2569
0.54 1.2557 0.46 1.2557
0.53 1.2546 0.47 1.2546
0.52 1.2540 0.48 1.2540
0.51 1.2535 0.49 1.2535
0.50 1.2534 0.50 1.2534
To obtain the biserial correlation from a point-biserial correlation, multiply the point-biserial correlation by SQRT(proportion-correct-value*(1-proportion-correct-value)) divided by the normal curve ordinate at the point where the normal curve is split in the same proportions.
There is no direct relationship between the point-polyserial correlation and the polyserial correlation.
Help for Winsteps Rasch Measurement and Rasch Analysis Software: www.winsteps.com. Author: John Michael Linacre
Facets Rasch measurement software.
Buy for $149. & site licenses.
Freeware student/evaluation Minifac download Winsteps Rasch measurement software. Buy for $149. & site licenses. Freeware student/evaluation Ministep download |
---|
Forum: | Rasch Measurement Forum to discuss any Rasch-related topic |
---|
Questions, Suggestions? Want to update Winsteps or Facets? Please email Mike Linacre, author of Winsteps mike@winsteps.com |
---|
State-of-the-art : single-user and site licenses : free student/evaluation versions : download immediately : instructional PDFs : user forum : assistance by email : bugs fixed fast : free update eligibility : backwards compatible : money back if not satisfied Rasch, Winsteps, Facets online Tutorials |
---|
Coming Rasch-related Events: Winsteps and Facets | |
---|---|
Oct 21 - 22 2024, Mon.-Tues. | In person workshop: Facets and Winsteps in expert judgement test validity - UNAM (México) y Universidad Católica de Colombia. capardo@ucatolica.edu.co, benildegar@gmail.com |
Oct. 4 - Nov. 8, 2024, Fri.-Fri. | On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com |
Jan. 17 - Feb. 21, 2025, Fri.-Fri. | On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com |
May 16 - June 20, 2025, Fri.-Fri. | On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com |
June 20 - July 18, 2025, Fri.-Fri. | On-line workshop: Rasch Measurement - Further Topics (E. Smith, Facets), www.statistics.com |
Oct. 3 - Nov. 7, 2025, Fri.-Fri. | On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com |
Our current URL is www.winsteps.com
Winsteps® is a registered trademark