ASYMPTOTE= item upper and lower asymptotes = No

Persons responding to multiple-choice questions (MCQ) can exhibit guessing and carelessness. In the three-parameter IRT model (3-PL), guessing is parameterized as a lower asymptote to the item's logistic ogive of the probability of a correct answer. In the four-parameter IRT model (4-PL), carelessness is parameterized as an upper asymptote. Winsteps reports a first approximation to these parameter values, but does not use the estimates to alter the Rasch measures. The literature suggests that when the lower asymptote is .10 or greater, it is "substantial" (How Many IRT Parameters Does It Take to Model Psychopathology Items? Steven P. Reise, Niels G. Waller, Psychological Methods, 2003, 8, 2, 164-184).

 

ASYMPTOTE=Y

report the values of the Upper and Lower asymptotes in the Item Tables and IFILE=

ASYMPTOTE=N

do not report values for the Upper and Lower asymptotes.

 

Example 1: Estimate the 4-PL IRT parameters for the Knox Cube Test data:

Run Exam1.txt

After the analysis completes, use the "Specification" pull-down menu:

Enter: DISCRIM = Yes to report the Item Discrimination

Enter: ASYMP = Yes to report the asymptotes

On the "Output Tables" menu, select an item table, e.g., Table 14.

 

+-------------------------------------------------------------------------------------------------+

|ENTRY    RAW                        |   INFIT  |  OUTFIT  |PTMEA|ESTIM| ASYMPTOTE |              |

|NUMBER  SCORE  COUNT  MEASURE  ERROR|MNSQ  ZSTD|MNSQ  ZSTD|CORR.|DISCR|LOWER UPPER| TAP          |

|------------------------------------+----------+----------+-----+-----+-----------+--------------|

|     4     32     34   -4.40     .81| .90    .0| .35    .8|  .55| 1.09|  .00  1.00| 1-3-4        |

|     6     30     34   -3.38     .64|1.17    .6| .96    .6|  .53|  .87|  .10  1.00| 3-4-1        |

|     7     31     34   -3.83     .70|1.33    .9|2.21   1.2|  .40|  .54|  .09   .98| 1-4-3-2      |

 

Example 2: Polytomous data: Liking for Science

Run Example0.txt

After the analysis completes, use the "Specification" pull-down menu:

Enter: DISCRIM = Yes to report the Item Discrimination

Enter: ASYMP = Yes to report the asymptotes

On the "Output Tables" menu, select an item table, e.g., Table 14.

 

------------------------------------------------------------------------------------------------------------

|ENTRY   TOTAL  TOTAL          |   INFIT  |  OUTFIT  |PTMEASURE-A|ESTIM| ASYMPTOTE |                       |

|NUMBER  SCORE  COUNT  MEASURE |MNSQ  ZSTD|MNSQ  ZSTD|CORR.  EXP.|DISCR|LOWER UPPER| ACT                   |

|------------------------------+----------+----------+-----------+-----+-----------+-----------------------|

|     1    109     75    -.40  | .55  -3.5| .49  -2.5|  .64   .49| 1.52|  .00  2.00| WATCH BIRDS           |

|     5     37     75    2.42  |2.30   5.6|3.62   7.3|  .05   .61| -.54|  .49  2.00| FIND BOTTLES AND CANS |

|    23     42     75    2.18  |2.41   6.3|4.11   9.0|  .00   .61| -.90|  .56  1.64| WATCH A RAT           |

 

Estimation

Item Response Theory (IRT) three-parameter and four-parameter (3-PL, 4-PL) models estimate lower-asymptote parameters ("guessability", "pseudo-guessing") and upper-asymptote parameters ("mistake-ability") and use these estimates to modify the item difficulty and person ability estimates. Rasch measurement models guessability and mistake-ability as misfit, and does not attempt to make adjustments for item difficulties and person abilities. But initial approximations for the values of the asymptotes can be made, and output by Winsteps with ASYMPTOTE=Yes.

 

The algebraic representation of the discrimination and lower asymptote estimate by Winsteps are similar to 3-PL IRT, but the estimation method is different, because Winsteps does not change the difficulties and abilities from their 1-PL values. Consequently, in Winsteps, discrimination and asymptotes are indexes, not parameters as they are in 3-PL.

 

A lower-asymptote model for dichotomies or polytomies is:

Tni = ci + (mi - ci) (Eni/mi)

where Tni is the expected observation for person n on item i, ci is the lower asymptote for item i, mi is the highest category for item i (counting up from 0), and Eni is the Rasch expected value (without asymptotes). Rewriting:

ci = mi (Tni - Eni) / (mi - Eni)

 

This provides the basis for a model for estimating ci. Since we are concerned about the lower asymptote, let us construct a weight, Wni ,

Bi = B(Eni=0.5) as the ability of a person who scores 0.5 on the item,

then Bni = Bn - Di and Wni = Bni - Bi for all Bn < Bi otherwise Wni = 0, for each observation Xni with expectation Eni,

ci Σ(Wni mi (Xni - Eni)) / Σ(Wni (mi - Eni))

 

Similarly, for di, the upper asymptote,

di Σ(Wni mi Xni) / Σ(Wni Eni)) for Bni>B(Eni=mi-0.5)

 

The lower asymptote is the lower of ci or the item p-value. The upper asymptote is the higher of di or the item p-value. If the data are sparse in the asymptotic region, the estimates may not be good. This is a known problem in 3-PL estimation, leading many analysts to impute, rather than estimate, asymptotic values.

 

Birnbaum A. (1968) Some latent trait models and their uses in inferring an examinee's ability. In F.M. Lord & M.R. Novick, Statistical theories of mental test scores (pp. 395-479). Reading, MA: Addison-Wesley.

Barton M.A. & Lord F.M. (1981) An upper asymptote for the three-parameter logistic item-response model. Princeton, N.J.: Educational Testing Service.


Help for Winsteps Rasch Measurement and Rasch Analysis Software: www.winsteps.com. Author: John Michael Linacre

Facets Rasch measurement software. Buy for $149. & site licenses. Freeware student/evaluation Minifac download
Winsteps Rasch measurement software. Buy for $149. & site licenses. Freeware student/evaluation Ministep download

Rasch Books and Publications
Invariant Measurement: Using Rasch Models in the Social, Behavioral, and Health Sciences, 2nd Edn, 2024 George Engelhard, Jr. & Jue Wang Applying the Rasch Model (Winsteps, Facets) 4th Ed., Bond, Yan, Heene Advances in Rasch Analyses in the Human Sciences (Winsteps, Facets) 1st Ed., Boone, Staver Advances in Applications of Rasch Measurement in Science Education, X. Liu & W. J. Boone Rasch Analysis in the Human Sciences (Winsteps) Boone, Staver, Yale
Introduction to Many-Facet Rasch Measurement (Facets), Thomas Eckes Statistical Analyses for Language Testers (Facets), Rita Green Invariant Measurement with Raters and Rating Scales: Rasch Models for Rater-Mediated Assessments (Facets), George Engelhard, Jr. & Stefanie Wind Aplicação do Modelo de Rasch (Português), de Bond, Trevor G., Fox, Christine M Appliquer le modèle de Rasch: Défis et pistes de solution (Winsteps) E. Dionne, S. Béland
Exploring Rating Scale Functioning for Survey Research (R, Facets), Stefanie Wind Rasch Measurement: Applications, Khine Winsteps Tutorials - free
Facets Tutorials - free
Many-Facet Rasch Measurement (Facets) - free, J.M. Linacre Fairness, Justice and Language Assessment (Winsteps, Facets), McNamara, Knoch, Fan
Other Rasch-Related Resources: Rasch Measurement YouTube Channel
Rasch Measurement Transactions & Rasch Measurement research papers - free An Introduction to the Rasch Model with Examples in R (eRm, etc.), Debelak, Strobl, Zeigenfuse Rasch Measurement Theory Analysis in R, Wind, Hua Applying the Rasch Model in Social Sciences Using R, Lamprianou El modelo métrico de Rasch: Fundamentación, implementación e interpretación de la medida en ciencias sociales (Spanish Edition), Manuel González-Montesinos M.
Rasch Models: Foundations, Recent Developments, and Applications, Fischer & Molenaar Probabilistic Models for Some Intelligence and Attainment Tests, Georg Rasch Rasch Models for Measurement, David Andrich Constructing Measures, Mark Wilson Best Test Design - free, Wright & Stone
Rating Scale Analysis - free, Wright & Masters
Virtual Standard Setting: Setting Cut Scores, Charalambos Kollias Diseño de Mejores Pruebas - free, Spanish Best Test Design A Course in Rasch Measurement Theory, Andrich, Marais Rasch Models in Health, Christensen, Kreiner, Mesba Multivariate and Mixture Distribution Rasch Models, von Davier, Carstensen
As an Amazon Associate I earn from qualifying purchases. This does not change what you pay.

facebook Forum: Rasch Measurement Forum to discuss any Rasch-related topic

To receive News Emails about Winsteps and Facets by subscribing to the Winsteps.com email list,
enter your email address here:

I want to Subscribe: & click below
I want to Unsubscribe: & click below

Please set your SPAM filter to accept emails from Winsteps.com
The Winsteps.com email list is only used to email information about Winsteps, Facets and associated Rasch Measurement activities. Your email address is not shared with third-parties. Every email sent from the list includes the option to unsubscribe.

Questions, Suggestions? Want to update Winsteps or Facets? Please email Mike Linacre, author of Winsteps mike@winsteps.com


State-of-the-art : single-user and site licenses : free student/evaluation versions : download immediately : instructional PDFs : user forum : assistance by email : bugs fixed fast : free update eligibility : backwards compatible : money back if not satisfied
 
Rasch, Winsteps, Facets online Tutorials


 

 
Coming Rasch-related Events: Winsteps and Facets
Oct 21 - 22 2024, Mon.-Tues. In person workshop: Facets and Winsteps in expert judgement test validity - UNAM (México) y Universidad Católica de Colombia. capardo@ucatolica.edu.co, benildegar@gmail.com
Oct. 4 - Nov. 8, 2024, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
Jan. 17 - Feb. 21, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
May 16 - June 20, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
June 20 - July 18, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Further Topics (E. Smith, Facets), www.statistics.com
Oct. 3 - Nov. 7, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com

 

 

Our current URL is www.winsteps.com

Winsteps® is a registered trademark