Residuals / Responses Output File = " "

From the Output Files menu, clicking on Residuals/Response Output file. A file of residuals from the main analysis is produced. This file is designed for input into other programs with one line per measurable observation. It can be used for calculating other fit statistics and producing specialized diagnostic reports. Also produced by Residualfile=.

 

 

For help with this dialog box, see Output Dialog Box.

 

Heading lines= control the output of the heading line. CSV= allows tab-delimited and other formats. QM quotation marks, controls whether labels are within quotation marks.

 

Output to SPSS, Excel and R Statistics are in their native-format. Excel and R Statistics are launched.

 

Modify specifications lets you change the values of some basic output settings

 

Status: Responses used for estimation: report responses used for estimation (Status code: 1, 2)
Responses not used for estimation: report responses not used for estimation (Status code: -5, -4 , -3, -2, -1)

 

Output directly to Excel and into an SPSS .sav file are supported.

 

Select fields to output lets you choose which fields you want to display:

 

If "Make this the default" is ignored, then you need to take ownership of file Facets.ini in your c:\Facets folder. See www.addictivetips.com/windows-tips/windows-7-access-denied-permission-ownership

 

Here is an example of the format with 4 decimal places in the "Select fields" dialog box. The precise format depends on the number of facets in your data:

 

       Obs       Stp       Exp       Res       Var     StRes        Wt     LProb   Measure     Displ    Status     MPCat        E1        E2        M1        M2 Children  Tapping_it

         1         1       .97       .03       .02       .16      1.00      -.03      3.66      1.03         2         1         1         1     -2.98     -6.64 Boy       1-4      

         1         1       .97       .03       .02       .16      1.00      -.03      3.66      1.03         2         1         1         2     -2.98     -6.64 Boy       2-3      

 

The columns are:

 

Fixed field columns

Abbreviation

Description

1-10

Obs

response as observed in the data file

11-20

Stp

observed response as renumbered into a count of ordered steps

21-30

Exp

expected score for this response (decimal places set in selection dialog box)

31-40

Res

score residual: (observed Stp - expected Exp)

41-50

Var

model variance of observed score around the expected score for this response, the statistical information in this response

51-60

StRes

standardized residual: residual / sqrt (variance)

61-70

Wt

weighting (model weight * observation weight * item weight)

71-80

LProb

natural logarithm of the probability of the observation

81-90

Meas

sum of the measures of the elements producing the observation. User-scaled: Meas = sum(element measures - umean) + umean

91-100

Disp

displacement = measure residual = (score residual / variance)*(user-scaling). The measure of element 1 according to this observation is "element measure" for element + "displacement" * (orientation of facet 1). This is limited to the range -10 to +10 logits.

101-110

Status

Status Code

Meaning

-6 (not used  for estimation)

Response in two multiple-observation ranges, such as 1-4, 2-6,...

-5 (not used)

Responses after end-of-file.

-4 (not used)

Responses only in extreme scores.

-3 (not used)

Responses with invalid elements. Elements for these observations are not defined. See Table 2.

-2 (not used)

Responses in two extreme scores

-1 (not used)

Responses invalid after recounting

A dichotomy or rating scale has less than two categories, so it cannot be estimated.

1 (used for estimation)

Responses used for estimation

2 (used)

Responses in one extreme score

111-120

MPCat

most probable category to be observed. If two categories are equally probable, then the higher category is shown here

121-130

E(facet number)

element number for facet 1 or null element, usually 0

|

 


|

M(facet number)

element measure for facet 1 from Table 7 (user-scaled)

|

 


|

(facet label)

element label for facet 1

|

 


 

For "Category implies Measure" (C->M) and "Measure implies Category" (M->C) statistics, for each observation in the Facets Residualfile=,

"expected score for this response" - round this to the nearest category number = expected average category

if "expected average category" = "observed response as renumbered into a count of ordered steps" then MC = 1, else, MC = 0.

Compute average of MC for each observed category across all the relevant data for C->M

Compute average of MC for each expected category across all the relevant data for M->C

 

Example: The "Obs" (observed) is the original data. The "Stp" (step) is the ordinal version of the original data. This version is used for analysis, and is the version on which the "Exp" (expected) and the "Res" (residual) are based. This version may be the same as the original data, or the original data may be transformed either due to explicit instructions by the analyst, or by default operation of Facets.

 

For instance, suppose that the original data are observations of these three values: 10, 20 and 30. Then, by default, Facets will analyze these observations as the "steps": 10, 11, 12. If the original data are intended to be 10,11,12,13,14,....,28,29,30. Then please specify this is in your Models= statement:

Models=

?,?,..., R30K   ; where "K" means "Keep" the original numeration.


Help for Facets (64-bit) Rasch Measurement and Rasch Analysis Software: www.winsteps.com Author: John Michael Linacre.
 

Facets Rasch measurement software. Buy for $149. & site licenses. Freeware student/evaluation Minifac download
Winsteps Rasch measurement software. Buy for $149. & site licenses. Freeware student/evaluation Ministep download

Rasch Books and Publications
Invariant Measurement: Using Rasch Models in the Social, Behavioral, and Health Sciences, 2nd Edn, 2024 George Engelhard, Jr. & Jue Wang Applying the Rasch Model (Winsteps, Facets) 4th Ed., Bond, Yan, Heene Advances in Rasch Analyses in the Human Sciences (Winsteps, Facets) 1st Ed., Boone, Staver Advances in Applications of Rasch Measurement in Science Education, X. Liu & W. J. Boone Rasch Analysis in the Human Sciences (Winsteps) Boone, Staver, Yale
Introduction to Many-Facet Rasch Measurement (Facets), Thomas Eckes Statistical Analyses for Language Testers (Facets), Rita Green Invariant Measurement with Raters and Rating Scales: Rasch Models for Rater-Mediated Assessments (Facets), George Engelhard, Jr. & Stefanie Wind Aplicação do Modelo de Rasch (Português), de Bond, Trevor G., Fox, Christine M Appliquer le modèle de Rasch: Défis et pistes de solution (Winsteps) E. Dionne, S. Béland
Exploring Rating Scale Functioning for Survey Research (R, Facets), Stefanie Wind Rasch Measurement: Applications, Khine Winsteps Tutorials - free
Facets Tutorials - free
Many-Facet Rasch Measurement (Facets) - free, J.M. Linacre Fairness, Justice and Language Assessment (Winsteps, Facets), McNamara, Knoch, Fan
Other Rasch-Related Resources: Rasch Measurement YouTube Channel
Rasch Measurement Transactions & Rasch Measurement research papers - free An Introduction to the Rasch Model with Examples in R (eRm, etc.), Debelak, Strobl, Zeigenfuse Rasch Measurement Theory Analysis in R, Wind, Hua Applying the Rasch Model in Social Sciences Using R, Lamprianou El modelo métrico de Rasch: Fundamentación, implementación e interpretación de la medida en ciencias sociales (Spanish Edition), Manuel González-Montesinos M.
Rasch Models: Foundations, Recent Developments, and Applications, Fischer & Molenaar Probabilistic Models for Some Intelligence and Attainment Tests, Georg Rasch Rasch Models for Measurement, David Andrich Constructing Measures, Mark Wilson Best Test Design - free, Wright & Stone
Rating Scale Analysis - free, Wright & Masters
Virtual Standard Setting: Setting Cut Scores, Charalambos Kollias Diseño de Mejores Pruebas - free, Spanish Best Test Design A Course in Rasch Measurement Theory, Andrich, Marais Rasch Models in Health, Christensen, Kreiner, Mesba Multivariate and Mixture Distribution Rasch Models, von Davier, Carstensen
As an Amazon Associate I earn from qualifying purchases. This does not change what you pay.

facebook Forum: Rasch Measurement Forum to discuss any Rasch-related topic

To receive News Emails about Winsteps and Facets by subscribing to the Winsteps.com email list,
enter your email address here:

I want to Subscribe: & click below
I want to Unsubscribe: & click below

Please set your SPAM filter to accept emails from Winsteps.com
The Winsteps.com email list is only used to email information about Winsteps, Facets and associated Rasch Measurement activities. Your email address is not shared with third-parties. Every email sent from the list includes the option to unsubscribe.

Questions, Suggestions? Want to update Winsteps or Facets? Please email Mike Linacre, author of Winsteps mike@winsteps.com


State-of-the-art : single-user and site licenses : free student/evaluation versions : download immediately : instructional PDFs : user forum : assistance by email : bugs fixed fast : free update eligibility : backwards compatible : money back if not satisfied
 
Rasch, Winsteps, Facets online Tutorials

Our current URL is www.winsteps.com

Winsteps® is a registered trademark