Inter-rater Correlations

Inter-rater consistency: In the Table below, from a Facets analysis of the example "Essays.txt" data, the Correlation columns give the observed and expected correlations between the ratings given by each reader and the element measures. The element measures are based on the ratings given by all the readers, so this Point-Measure (PT-Biserial=Measure) correlation summarizes the agreement between this Reader and the consensus of all the readers. If you want the same correlation, but using the unadjusted ratings (not measures), then Pt-Biserial=Yes produces the column at the right of this table. The correlations are lower because they are not adjusted for rater leniency. BTW, this data is high quality, produced by ETS using their best raters for a special study.

 

AP English Essays (College Board/ETS) 8/24/2023 11:07:23 AM

Table 7.3.1  Reader Measurement Report  (arranged by MN).

 

+--------------------------------------------------------------------------------------------------------------------------------+--------

|  Total   Total   Obsvd  Fair(M)|   -    Model | Infit      Outfit    |Estim.| Correlation | Exact Agree. |                     | Corr. |

|  Score   Count  Average Average|Measure  S.E. | MnSq ZStd  MnSq ZStd |Discrm| PtMea PtExp | Obs %  Exp % | Nu Reader           | PtBis |

|--------------------------------+--------------+----------------------+------+-------------+--------------+---------------------|-------+

|   508      96      5.29   5.26 |   -.30   .08 | 1.23  1.6  1.21  1.4 |  .75 |   .60   .62 |  20.8   20.4 |  8 8                |   .32 |

|   485      96      5.05   5.00 |   -.16   .08 |  .52 -4.2   .53 -4.1 | 1.48 |   .67   .62 |  21.2   21.7 |  4 4                |   .39 |

|   484      96      5.04   4.99 |   -.15   .08 | 1.02   .1  1.01   .0 |  .97 |   .64   .62 |  24.1   21.6 |  9 9                |   .36 |

|   479      96      4.99   4.93 |   -.12   .08 | 1.13   .9  1.13   .9 |  .83 |   .55   .62 |  28.8   21.7 |  7 7                |   .29 |

|   473      96      4.93   4.86 |   -.08   .08 | 1.06   .5  1.06   .4 |  .93 |   .56   .62 |  20.8   21.7 |  2 2                |   .29 |

|   470      96      4.90   4.83 |   -.06   .08 | 1.40  2.6  1.37  2.4 |  .63 |   .65   .62 |  27.8   22.0 | 12 12               |   .33 |

|   466      96      4.85   4.79 |   -.04   .08 | 1.14   .9  1.11   .8 |  .81 |   .62   .61 |  30.6   21.9 | 11 11               |   .33 |

|   461      96      4.80   4.73 |    .00   .08 |  .71 -2.3   .71 -2.2 | 1.31 |   .68   .61 |  42.4   21.9 | 10 10               |   .36 |

|   444      96      4.63   4.55 |    .11   .08 |  .85 -1.1   .84 -1.1 | 1.14 |   .60   .61 |  36.1   22.0 |  5 5                |   .35 |

|   434      96      4.52   4.44 |    .17   .08 | 1.04   .3  1.06   .4 |  .93 |   .65   .60 |  38.9   21.9 |  6 6                |   .37 |

|   433      96      4.51   4.43 |    .18   .08 | 1.06   .4  1.03   .2 |  .99 |   .64   .60 |  27.8   21.8 |  3 3                |   .35 |

|   392      96      4.08   4.00 |    .45   .08 |  .79 -1.5   .79 -1.5 | 1.23 |   .48   .59 |  19.7   19.8 |  1 1                |   .27 |

|--------------------------------+--------------+----------------------+------+-------------+--------------+---------------------|-------+

|   460.8    96.0    4.80   4.73 |    .00   .08 | 1.00  -.1   .99  -.2 |      |   .61       |              | Mean (Count: 12)    |   .33 |

|    29.5      .0     .31    .32 |    .19   .00 |  .23  1.8   .22  1.7 |      |   .05       |              | S.D. (Population)   |   .03 |

|    30.8      .0     .32    .33 |    .20   .00 |  .24  1.9   .23  1.8 |      |   .06       |              | S.D. (Sample)       |   .04 |

+--------------------------------------------------------------------------------------------------------------------------------+--------

Model, Populn: RMSE .08  Adj (True) S.D. .17  Separation 2.17  Strata 3.22  Reliability (not inter-rater) .82

Model, Sample: RMSE .08  Adj (True) S.D. .18  Separation 2.28  Strata 3.38  Reliability (not inter-rater) .84

Model, Fixed (all same) chi-squared:  66.3  d.f.: 11  significance (probability): .00

Model,  Random (normal) chi-squared:  9.4  d.f.: 10  significance (probability): .49

Inter-Rater agreement opportunities: 384  Exact agreements: 108 =  28.1%  Expected:  82.6 =  21.5%

----------------------------------------------------------------------------------------------------------------------------------

 


 

Amother approach:

 

Use the Facets "Output Files" option to produce a Winsteps file.

Select the raters columns (items), and the relevant combinations of facets (e.g., examinees and tasks) as the rows.

This will produce a data file which can be used to produce inter-rater correlations in Excel.

 

If the inter-rater correlation computation is done in Winsteps,

In the Winsteps control file,

PRCOMP=Observation

ICORFILE=inter-rater-correlations.txt

Rasch estimates are not needed, so Ctrl+F soon after iteration starts.

inter-rater-correlations.txt contains a list of the inter-rater correlations based on the observations.

 

Otherwise, see Table 7 Agreement Statistics


Help for Facets (64-bit) Rasch Measurement and Rasch Analysis Software: www.winsteps.com Author: John Michael Linacre.
 

Facets Rasch measurement software. Buy for $149. & site licenses. Freeware student/evaluation Minifac download
Winsteps Rasch measurement software. Buy for $149. & site licenses. Freeware student/evaluation Ministep download

Rasch Books and Publications
Invariant Measurement: Using Rasch Models in the Social, Behavioral, and Health Sciences, 2nd Edn, 2024 George Engelhard, Jr. & Jue Wang Applying the Rasch Model (Winsteps, Facets) 4th Ed., Bond, Yan, Heene Advances in Rasch Analyses in the Human Sciences (Winsteps, Facets) 1st Ed., Boone, Staver Advances in Applications of Rasch Measurement in Science Education, X. Liu & W. J. Boone Rasch Analysis in the Human Sciences (Winsteps) Boone, Staver, Yale
Introduction to Many-Facet Rasch Measurement (Facets), Thomas Eckes Statistical Analyses for Language Testers (Facets), Rita Green Invariant Measurement with Raters and Rating Scales: Rasch Models for Rater-Mediated Assessments (Facets), George Engelhard, Jr. & Stefanie Wind Aplicação do Modelo de Rasch (Português), de Bond, Trevor G., Fox, Christine M Appliquer le modèle de Rasch: Défis et pistes de solution (Winsteps) E. Dionne, S. Béland
Exploring Rating Scale Functioning for Survey Research (R, Facets), Stefanie Wind Rasch Measurement: Applications, Khine Winsteps Tutorials - free
Facets Tutorials - free
Many-Facet Rasch Measurement (Facets) - free, J.M. Linacre Fairness, Justice and Language Assessment (Winsteps, Facets), McNamara, Knoch, Fan
Other Rasch-Related Resources: Rasch Measurement YouTube Channel
Rasch Measurement Transactions & Rasch Measurement research papers - free An Introduction to the Rasch Model with Examples in R (eRm, etc.), Debelak, Strobl, Zeigenfuse Rasch Measurement Theory Analysis in R, Wind, Hua Applying the Rasch Model in Social Sciences Using R, Lamprianou El modelo métrico de Rasch: Fundamentación, implementación e interpretación de la medida en ciencias sociales (Spanish Edition), Manuel González-Montesinos M.
Rasch Models: Foundations, Recent Developments, and Applications, Fischer & Molenaar Probabilistic Models for Some Intelligence and Attainment Tests, Georg Rasch Rasch Models for Measurement, David Andrich Constructing Measures, Mark Wilson Best Test Design - free, Wright & Stone
Rating Scale Analysis - free, Wright & Masters
Virtual Standard Setting: Setting Cut Scores, Charalambos Kollias Diseño de Mejores Pruebas - free, Spanish Best Test Design A Course in Rasch Measurement Theory, Andrich, Marais Rasch Models in Health, Christensen, Kreiner, Mesba Multivariate and Mixture Distribution Rasch Models, von Davier, Carstensen
As an Amazon Associate I earn from qualifying purchases. This does not change what you pay.

facebook Forum: Rasch Measurement Forum to discuss any Rasch-related topic

To receive News Emails about Winsteps and Facets by subscribing to the Winsteps.com email list,
enter your email address here:

I want to Subscribe: & click below
I want to Unsubscribe: & click below

Please set your SPAM filter to accept emails from Winsteps.com
The Winsteps.com email list is only used to email information about Winsteps, Facets and associated Rasch Measurement activities. Your email address is not shared with third-parties. Every email sent from the list includes the option to unsubscribe.

Questions, Suggestions? Want to update Winsteps or Facets? Please email Mike Linacre, author of Winsteps mike@winsteps.com


State-of-the-art : single-user and site licenses : free student/evaluation versions : download immediately : instructional PDFs : user forum : assistance by email : bugs fixed fast : free update eligibility : backwards compatible : money back if not satisfied
 
Rasch, Winsteps, Facets online Tutorials

Coming Rasch-related Events
Jan. 17 - Feb. 21, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
Feb. - June, 2025 On-line course: Introduction to Classical Test and Rasch Measurement Theories (D. Andrich, I. Marais, RUMM2030), University of Western Australia
Feb. - June, 2025 On-line course: Advanced Course in Rasch Measurement Theory (D. Andrich, I. Marais, RUMM2030), University of Western Australia
Apr. 21 - 22, 2025, Mon.-Tue. International Objective Measurement Workshop (IOMW) - Boulder, CO, www.iomw.net
May 16 - June 20, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
June 20 - July 18, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Further Topics (E. Smith, Facets), www.statistics.com
Oct. 3 - Nov. 7, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com

 

Our current URL is www.winsteps.com

Winsteps® is a registered trademark