Dvalues for data facets =

If a facet entry in the data file has the same value for all data lines, then it can be omitted from the data, and replaced by a Dvalue= statement, e.g., a set of items administered to all persons.

 

If a facet entry in the data file has its value in the label of another element, then it can be omitted from the data, and replaced by a Dvalue= statement, e.g., a demographic indicator in the person element label.

 

Facets are always their locations in the data, before Entered=

Data=

facet 1, facet 2, facet 3, facet 4, ..... , observation

 

Dvalues = element details for element not specified in data file

Element value for target facet

Examples

Meaning in the data

element number in facet position in data

Dvalues = 3, 1

data facet 3 element is always element 1

element number in facet - element number in facet

Dvalues = 3, 1-4

Dvalues = 3, 1_4 (use _ if - fails)

facet 3 elements are always elements 1-4

$Line

Dvalues = 3, $Line

facet 3 element is the line number in this data file

$Cumulative

Dvalues = 3, $Cumulative

facet 3 element is the line number in all the data files combined

reference facet number, $Group

Dvalues = 3, 1, $Group

facet 3 element is the group-number of the data facet 1 element

reference facet number, start column, width in columns

Dvalues = 3, 1, 2, 3

data facet 3 element is in the  element label of data facet 1 element, starting in column 2 with a width of 3 columns

 

A. Elements numbers the same for every data line. This occurs when, for instance, every examinee is rated on items 1_5, or when every patient is observed on items 1-13.

 

The format for one Dvalue= is:

Dvalue = facet entry number in data, constant value

 

The format for several Dvalues= is:

Dvalue=

facet entry number in data, constant value

facet entry number in data, constant value

....

*

 

Example 1: In the Guilford.txt example, the standard layout is:

Facets = 3

Data =

1, 1, 1_5, 5,5,3,5,3

1, 2, 1_5, 9,7,5,8,5

....

3, 7, 1_5, 7,7,7,5,7

 

This is the same as:

Facets = 3

Dvalue = 3, 1-5

Data =

1, 1, 5,5,3,5,3

1, 2, 9,7,5,8,5

....

3, 7, 7,7,7,5,7

 

B. Elements numbers based on line number. This occurs when, for instance, the examinee is the line number in the data

 

The format for one Dvalue= is:

Dvalue = facet entry number in data, program variable

 

The format for several Dvalues= is:

Dvalue=

facet entry number in data, program variable

facet entry number in data, program variables

....

*

 

Program variables are:

$Line = Data-line number in current data file (excluding comment lines and blank lines)

$Cumulative = Data-line number in current data file (including previous data files, if any)

 

Example: for the Knox Cube Test:

dvalues=

1, $Line  ; facet 1: person elements are same as data line number

2, 1-18   ; facet 2: every person responds to 18 items

*

Data =                

1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0 ; child 1, items 1-18

1,1,1,1,1,1,0,0,1,1,1,0,0,1,0,0,0,0

1,1,1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0

1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0

 

C. An element identifier for one facet (the target) is in the element label of another facet (the reference) for the same observation. If the segment in the reference element label is a number, that becomes the element number for the target facet. If non-numeric, then the segment is matched to the start of the elements labels given for the target facets, up to :. If ":" is omitted, then a match is made to the left-end of the target element label.

The format is:

Dvalue= facet entry number for target facet, reference facet location in data, start column in the label, length of field in the label

The format for several Dvalues= is:

Dvalue=

facet entry number for target facet, reference facet location in data, start column in the label, length of field in the label

facet entry number for target facet, reference facet location in data, start column in the label, length of field in the label

........

*

 

Example 1. The Knox Cube Test with interactions example data set contains replacements for facets 3 and 4:

 

Dvalues =  ; The child gender (sex) and number of taps are in the labels,

          ; so can be omitted from the data

3, 1, 1, 1 ; Child gender element for Facet 3 is indicated in

          ; the label of Facet 1, column 1 length 1

4, 2, 1, 1 ; Item length element for Facet 4 is indicated in

          ;the label of Facet 2, column 1 length 1

*

 

Example 2. Ethnicity is indicated by a numeric value in column 1 of the student label. Gender is in column 2.

Facets=4  ; persons, item, ethnicity, gender

Models = ?,?B,?,?B,D ; we want to look for item-gender DIF

Labels=

1, Student

234 = 61 Jose  ; Jose is a Hispanic (6 in column 1), male (column 2 of label=1)

235 = 32 Mary  ; Mary is a Caucasian (3 in column 1), female (column 2 of label =2)

......

*

2, Items

1-4   ; 4 dichotomous items, scored 0-1.

*

3, Ethnicity, A  ; elements anchored at 0 to avoid distorting student measures

3, Caucasian, 0

6, Hispanic, 0

*

4, Gender, A  ; elements anchored at 0 to avoid distorting student measures

1, Male, 0

2, Female, 0

*

Dvalues=

2, 1-4   ; all students administered items 1-4

3, 1, 1, 1  ; element number for facet 3 (ethnicity) is in element label for facet 1, column 1 with a length of 1

4, 1, 2, 1  ; element number for facet 4 (gender) is in element label for facet 1, column 2 with a length of 1

*

Data=

234, 0,1,1,0  ; facet 1 element 234 then 4 observations. would be 234, 1_4, 6, 1, 0,1,1,0 without Dvalues =

235, 1,1,0,0  ; facet 1 element 235 then 4 observations. would be 235, 1_4, 3, 2, 1,1,0,0 without Dvalues =

 

Example 3. Gender is indicated by a non-numeric value in column 2 of the student label

Facets=3 ; persons, item, DIF indicator

Models = ?,?B,?B ; we want to look for gender-related item DIF

Labels=

1, Student

234 = 6M Jose  ; Jose is a male (column 2 of label=1)

235 = 3F Mary  ; Mary is a female (column 2 of label =2)

......

*

2, Items

1-4   ; 4 dichotomous items, scored 0-1.

*

3, Gender, A  ; elements anchored at 0 to avoid distorting student measures; only for DIF analysis

1, M:Male, 0  ; M: - colon, so M is used to match the code in the student label

2, Female, 0  ; no :, so match is made to left-end of label for length of dvalues= field (width 1 in this example).

*

Dvalues=

2, 1-4   ; all students administered items 1-4

3, 1, 2, 1  ; element number for facet 3 is in column 2 of element label for facet 1.

*

Data=

234, 0,1,1,0  ; facet 1 element 234 with 4 observations. would be 234, 1_4, 1, 0,1,1,0 without Dvalues =

235, 1,1,0,0  ; facet 1 element 235 with 4 observations. would be 235, 1_4, 2, 1,1,0,0 without Dvalues =

 

Example 4: To test that Dvalues= is functioning correctly:

title= "dvalue test"

facets = 2

residualfile=dvalueresiduals.txt

models=?,?,R

labels=

1, Facet 1

1=Fred

2=Mary

*

2, Facet 2

1=M:supervisor

2=F:janitor

*

dvalues=

2,1,1,1 ; facet 2 is the first character of the element for facet 1

*

data=

1_2, 0,1 

1_2, 1,0

 

; this analyzes as (see residualfile=)

; 1 1 2 2 Obs 

; 1 Fred 2 F:janitor 0 

; 2 Mary 1 M:supervisor 1 

; 1 Fred 2 F:janitor 1 

; 2 Mary 1 M:supervisor 0 

 

Example 5: Demonstrates element numbers in element labels:

facets = 3

model=?,?,?,R

labels=

1, Facet 1

1-10

*

2, Facet 2 ; this is not in the data line

1 = fruit ; these element numbers are in the element labels of Facet 3

2 = vegetable

*

3, Facet 3 ; this is in the data line

1,1 apple  ; the element label contains the element number for Facet 2

2,1 banana

3,1 orange

4,2 carrot

5,2 potato

6,2 cabbage

7,2 pea

*

dvalue=*

2, 3,1,1  ; element numbers for Facet 2 are in the element labels of Facet 3

*

data=

1,1_7, 1,0,1,0,1,0,1  ; Facet 1, Facet 3, 7 responses. Facet 2 specified by Facet 3

2,1_7, 0,1,0,1,0,1,0

 

D. An element identifier for one facet (the target) is in the group number of an element of another facet.

 

The format is:

Dvalue= facet entry number for target facet, reference facet location in data, $G

The format for several Dvalues= is:

Dvalue=

facet entry number for target facet, reference facet location in data, $G

facet entry number for target facet, reference facet location in data, $G

........

*

 

Example 6:  The element number of facet 3 is the group number of the element in facet 1:

Facets=3 ; person, item, ethnicity

Models=?,?,?,R

Labels=

1, Person

1 = George, , 1  ; in ethnic group 1

2 = Maria, , 2 ; in ethnic group 2

....

*

2, Item

1 = Arithmetic

2 = Social Studies

....

*

3, Ethnic group

1 = African-American

2 = Asian

.....

*

Dvalues = 3, 1, $Group  ; element number for facet 3 is group number in facet 1

Data =

1, 1, 4        ; person 1 (George) is rated on item 2 (Arithmetic) with a rating of 4. 

         ; the element number for facet 3 is the group number for facet 1 (1, African-American).

 

Example 7: with an Excel spreadsheet

Facets = 4 ; facet 4 is the item facets

Dvalues= 4, 1-20 ; there are 20 item elements. Then 20 ratings

Data = exceldata.xls

 

Exceldata.xls:

 


 

 

Example 7. Dvalues= applies to the data lines before Entered= is applied.

 

Facets = 4

Entered = 1,2,2,3

Models = ?, ?,-?,?,D

Dvalues =

4, 1-4   ; this is facet 4 in the data, and will match the elements of facet 3 in Labels= after Entered=

*


Help for Facets (64-bit) Rasch Measurement and Rasch Analysis Software: www.winsteps.com Author: John Michael Linacre.
 

Facets Rasch measurement software. Buy for $149. & site licenses. Freeware student/evaluation Minifac download
Winsteps Rasch measurement software. Buy for $149. & site licenses. Freeware student/evaluation Ministep download

Rasch Books and Publications
Invariant Measurement: Using Rasch Models in the Social, Behavioral, and Health Sciences, 2nd Edn, 2024 George Engelhard, Jr. & Jue Wang Applying the Rasch Model (Winsteps, Facets) 4th Ed., Bond, Yan, Heene Advances in Rasch Analyses in the Human Sciences (Winsteps, Facets) 1st Ed., Boone, Staver Advances in Applications of Rasch Measurement in Science Education, X. Liu & W. J. Boone Rasch Analysis in the Human Sciences (Winsteps) Boone, Staver, Yale
Introduction to Many-Facet Rasch Measurement (Facets), Thomas Eckes Statistical Analyses for Language Testers (Facets), Rita Green Invariant Measurement with Raters and Rating Scales: Rasch Models for Rater-Mediated Assessments (Facets), George Engelhard, Jr. & Stefanie Wind Aplicação do Modelo de Rasch (Português), de Bond, Trevor G., Fox, Christine M Appliquer le modèle de Rasch: Défis et pistes de solution (Winsteps) E. Dionne, S. Béland
Exploring Rating Scale Functioning for Survey Research (R, Facets), Stefanie Wind Rasch Measurement: Applications, Khine Winsteps Tutorials - free
Facets Tutorials - free
Many-Facet Rasch Measurement (Facets) - free, J.M. Linacre Fairness, Justice and Language Assessment (Winsteps, Facets), McNamara, Knoch, Fan
Other Rasch-Related Resources: Rasch Measurement YouTube Channel
Rasch Measurement Transactions & Rasch Measurement research papers - free An Introduction to the Rasch Model with Examples in R (eRm, etc.), Debelak, Strobl, Zeigenfuse Rasch Measurement Theory Analysis in R, Wind, Hua Applying the Rasch Model in Social Sciences Using R, Lamprianou El modelo métrico de Rasch: Fundamentación, implementación e interpretación de la medida en ciencias sociales (Spanish Edition), Manuel González-Montesinos M.
Rasch Models: Foundations, Recent Developments, and Applications, Fischer & Molenaar Probabilistic Models for Some Intelligence and Attainment Tests, Georg Rasch Rasch Models for Measurement, David Andrich Constructing Measures, Mark Wilson Best Test Design - free, Wright & Stone
Rating Scale Analysis - free, Wright & Masters
Virtual Standard Setting: Setting Cut Scores, Charalambos Kollias Diseño de Mejores Pruebas - free, Spanish Best Test Design A Course in Rasch Measurement Theory, Andrich, Marais Rasch Models in Health, Christensen, Kreiner, Mesba Multivariate and Mixture Distribution Rasch Models, von Davier, Carstensen
As an Amazon Associate I earn from qualifying purchases. This does not change what you pay.

facebook Forum: Rasch Measurement Forum to discuss any Rasch-related topic

To receive News Emails about Winsteps and Facets by subscribing to the Winsteps.com email list,
enter your email address here:

I want to Subscribe: & click below
I want to Unsubscribe: & click below

Please set your SPAM filter to accept emails from Winsteps.com
The Winsteps.com email list is only used to email information about Winsteps, Facets and associated Rasch Measurement activities. Your email address is not shared with third-parties. Every email sent from the list includes the option to unsubscribe.

Questions, Suggestions? Want to update Winsteps or Facets? Please email Mike Linacre, author of Winsteps mike@winsteps.com


State-of-the-art : single-user and site licenses : free student/evaluation versions : download immediately : instructional PDFs : user forum : assistance by email : bugs fixed fast : free update eligibility : backwards compatible : money back if not satisfied
 
Rasch, Winsteps, Facets online Tutorials

Coming Rasch-related Events
Jan. 17 - Feb. 21, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
Feb. - June, 2025 On-line course: Introduction to Classical Test and Rasch Measurement Theories (D. Andrich, I. Marais, RUMM2030), University of Western Australia
Feb. - June, 2025 On-line course: Advanced Course in Rasch Measurement Theory (D. Andrich, I. Marais, RUMM2030), University of Western Australia
Apr. 21 - 22, 2025, Mon.-Tue. International Objective Measurement Workshop (IOMW) - Boulder, CO, www.iomw.net
May 16 - June 20, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
June 20 - July 18, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Further Topics (E. Smith, Facets), www.statistics.com
Oct. 3 - Nov. 7, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com

 

Our current URL is www.winsteps.com

Winsteps® is a registered trademark