Calculating estimates

Initial estimates are obtained by the PROX algorithm, and then more refined ones by the JMLE (UCON) algorithm (or by the Facets implementation of PMLE). Check that convergence is occurring by reviewing the "Residual" and "Change" columns for smaller values each iteration. The iterative process can be terminated by pressing Ctrl+S simultaneously.

 

With T3onscreen= No, so that detailed output is displayed:

 

Table 3. Iteration Report

Iteration 1   Largest Residuals  |----------Score------------|   logit Measure

Facet     Name          No./Cat   Raw  Expected Residual Resd%  Value    Change

>=============================================================================<

Junior Sc Betty               2     79                            .740     .740

Iteration    1  PROX                                               max.=   .740

 

PROX - "normal approximation algorithm" is used to make initial estimates.

If "PROX Recount required" is displayed, some elements or categories had a 0 or perfect score. Measure for these can not be estimated directly, so their estimation is deferred and all marginal scores recounted without them. PROX ceases when the maximum change is less than 0.1 logits

 

Iteration 2   Largest Residuals  |----------Score------------|   logit Measure

Facet     Name          No./Cat   Raw  Expected Residual Resd%  Value    Change

Checking subset connection..

>=============================================================================<

Scale:    ?B,?B,?,CREATIVI    4     31      6.3     24.7  79.8   -.948    -.948

Scale:    ?B,?B,?,CREATIVI    5      6      6.5      -.5  -8.7    .961     .961

Junior Sc Fred                6     39     18.0     21.0  17.5   -.409     .237

Iteration    2  JMLE                       max.=    21.0  17.5     max.=   .237

 

JMLE= "joint maximum likelihood estimation" makes more precise estimates. The least-converged elements or rating-scale categories are shown (largest residual, largest residual percent, largest logit change). We want max.= to approach 0.

 

Subset connection O.K.

 

Facets confirms that all elements can be measured unambiguously in one frame of reference.

 

|

more JMLE iterations

|

Iteration 15  Largest Residuals  |----------Score------------|   logit Measure

Facet     Name          No./Cat   Raw  Expected Residual Resd%  Value    Change

>=============================================================================<

Scale:    ?B,?B,?,CREATIVI    4     31     30.8       .2    .6  -1.477    -.001

Scale:    ?B,?B,?,CREATIVI    1      4      4.0       .0   -.7   -.644    -.009

Traits    Enthusiasm          5     58     58.4      -.4   -.2    .498     .004

Junior Sc Betty               2     79     78.7       .3    .2    .638     .005

Junior Sc Fred                6     39     39.3      -.3   -.2   -.562    -.004

Iteration   15  JMLE                       max.=     -.4   -.2     max.=   .005

 

JMLE ceases when the max.= values are small, and the convergence criteria are met. If the maximum residual does not decrease noticeably per iteration, then Estimation menu, "Bigger".. If the maximum residual oscillates between large positive and negative values, then Estimation menu "Reduce". See also "My analysis does not converge."

 

Column headings have the following meanings:

Facet = Name of the facet, as given in specifications or "Scale:" if details apply to a category of a rating scale (or partial credit).

Name = Name of element within Facet or model statement of a rating scale (or partial credit)

No./Cat = Number of element within facet or category number of a rating scale (or partial credit)

 

Score

Raw = Raw score (= sum of categories, after renumbering if necessary), or count of responses in category, an integer

Expected = Score or count expected based on current estimates, in tenths

Residual = Difference between observed Score and Expected score, in tenths

Resd% = Residual/(Maximum score - minimum score)%.

 

Logit Measure

Value = Revised estimate of parameter in log-odds units (logits) as a result of this iteration.

Change = Change in logit estimate from logit estimate of the previous iteration.

 

max.= is the maximum change or residual corresponding to any element, used to determine convergence.

 

Iteration = The number of times PROX or JMLE has been applied to the data.

 


 

Analysis fails after recounting

 

Table 3. Iteration Report

+-----------------------------------------------------------+

| Iteration      Max. Score Residual      Max. Logit Change |

|             Elements    %  Categories   Elements    Steps |

|-----------------------------------------------------------|

Validating subset connection... (Subsets=No to bypass)

>===========================================================<

| PROX   1     Recount required             3.6889          |

Consolidating 2 subsets

>.<

Subset connection O.K.

>===========================================================<

| PROX   2     Recount required             2.3615          |

>===========================================================<

| PROX   3     Recount required             3.6142          |

>===========================================================<

......

>===========================================================<

| PROX  20     Recount required           -20.4497          |

>===========================================================<

| PROX  21     Recount required            -5.2877          |

 

Error F36: All data eliminated as extreme.

 

This report suggests that Models= does not match the data or that there are not enough observations to estimate the rating-scale structure.

Suggestion: specify a predefined rating-scale structure, such as Binomial Trials. For instance:

Models = ?, ?, B6  ; instead of R6


Help for Facets (64-bit) Rasch Measurement and Rasch Analysis Software: www.winsteps.com Author: John Michael Linacre.
 

Facets Rasch measurement software. Buy for $149. & site licenses. Freeware student/evaluation Minifac download
Winsteps Rasch measurement software. Buy for $149. & site licenses. Freeware student/evaluation Ministep download

Rasch Books and Publications
Invariant Measurement: Using Rasch Models in the Social, Behavioral, and Health Sciences, 2nd Edn, 2024 George Engelhard, Jr. & Jue Wang Applying the Rasch Model (Winsteps, Facets) 4th Ed., Bond, Yan, Heene Advances in Rasch Analyses in the Human Sciences (Winsteps, Facets) 1st Ed., Boone, Staver Advances in Applications of Rasch Measurement in Science Education, X. Liu & W. J. Boone Rasch Analysis in the Human Sciences (Winsteps) Boone, Staver, Yale
Introduction to Many-Facet Rasch Measurement (Facets), Thomas Eckes Statistical Analyses for Language Testers (Facets), Rita Green Invariant Measurement with Raters and Rating Scales: Rasch Models for Rater-Mediated Assessments (Facets), George Engelhard, Jr. & Stefanie Wind Aplicação do Modelo de Rasch (Português), de Bond, Trevor G., Fox, Christine M Appliquer le modèle de Rasch: Défis et pistes de solution (Winsteps) E. Dionne, S. Béland
Exploring Rating Scale Functioning for Survey Research (R, Facets), Stefanie Wind Rasch Measurement: Applications, Khine Winsteps Tutorials - free
Facets Tutorials - free
Many-Facet Rasch Measurement (Facets) - free, J.M. Linacre Fairness, Justice and Language Assessment (Winsteps, Facets), McNamara, Knoch, Fan
Other Rasch-Related Resources: Rasch Measurement YouTube Channel
Rasch Measurement Transactions & Rasch Measurement research papers - free An Introduction to the Rasch Model with Examples in R (eRm, etc.), Debelak, Strobl, Zeigenfuse Rasch Measurement Theory Analysis in R, Wind, Hua Applying the Rasch Model in Social Sciences Using R, Lamprianou El modelo métrico de Rasch: Fundamentación, implementación e interpretación de la medida en ciencias sociales (Spanish Edition), Manuel González-Montesinos M.
Rasch Models: Foundations, Recent Developments, and Applications, Fischer & Molenaar Probabilistic Models for Some Intelligence and Attainment Tests, Georg Rasch Rasch Models for Measurement, David Andrich Constructing Measures, Mark Wilson Best Test Design - free, Wright & Stone
Rating Scale Analysis - free, Wright & Masters
Virtual Standard Setting: Setting Cut Scores, Charalambos Kollias Diseño de Mejores Pruebas - free, Spanish Best Test Design A Course in Rasch Measurement Theory, Andrich, Marais Rasch Models in Health, Christensen, Kreiner, Mesba Multivariate and Mixture Distribution Rasch Models, von Davier, Carstensen
As an Amazon Associate I earn from qualifying purchases. This does not change what you pay.

facebook Forum: Rasch Measurement Forum to discuss any Rasch-related topic

To receive News Emails about Winsteps and Facets by subscribing to the Winsteps.com email list,
enter your email address here:

I want to Subscribe: & click below
I want to Unsubscribe: & click below

Please set your SPAM filter to accept emails from Winsteps.com
The Winsteps.com email list is only used to email information about Winsteps, Facets and associated Rasch Measurement activities. Your email address is not shared with third-parties. Every email sent from the list includes the option to unsubscribe.

Questions, Suggestions? Want to update Winsteps or Facets? Please email Mike Linacre, author of Winsteps mike@winsteps.com


State-of-the-art : single-user and site licenses : free student/evaluation versions : download immediately : instructional PDFs : user forum : assistance by email : bugs fixed fast : free update eligibility : backwards compatible : money back if not satisfied
 
Rasch, Winsteps, Facets online Tutorials

Our current URL is www.winsteps.com

Winsteps® is a registered trademark