Table 14 is the pairwise bias report |
This is for 32-bit Facets 3.87. Here is Help for 64-bit Facets 4
This Table compares the local (biased?) relative measure of one element with the local relative measure of another element. Table 14 can be output from your main analysis or from the "Output Tables" menu.
If no comparisons can be made, then "Table 14: ... - No pairwise terms" is displayed in the Analysis window and output to Table 14.
Zscore=, Xtreme= and Arrange= control this Table. This Table presents the bias/interaction information in a pairwise format. It has the same information as Table 13. Table 14 contains several subtables, each containing the same information, but from different perspectives. Depending on how the Tables are conceptualized, they quantify item bias or differential item functioning, DIF, differential person functioning, DPF, differential rater functioning, DRF, differential task functioning, DTF, etc. Item bias and DIF are the same thing. The widespread use of the term "item bias" dates to the 1960's, the term "DIF" to the 1980's.
Here are two subtables. Brahe, a judge, has given Brahe rated Edward relatively low and Cavendish relatively high:
Table 14.3.1.1 Bias/Interaction Pairwise Report
---------------------------------------------------------------------------------------------------------------
| Target | Target Obs-Exp Context | Target Obs-Exp Context | Target Joint Rasch-Welch |
| N Junior | Measr S.E. Average N Senior sc | Measr S.E. Average N Senior sc |Contrast S.E. t d.f. Prob. |
---------------------------------------------------------------------------------------------------------------
| 4 David | .25 .29 1.54 2 Brahe | -1.05 .35 -.46 3 Cavendish | 1.30 .45 2.86 8 .0211 |
---------------------------------------------------------------------------------------------------------------
| Target | Target Obs-Exp Context | Target Obs-Exp Context | Target Joint Rasch-Welch |
| N Junior | Measr S.E. Average N Senior sc | Measr S.E. Average N Senior sc |Contrast S.E. t d.f. Prob. |
---------------------------------------------------------------------------------------------------------------
| 5 Edward | -.84 .36 -2.60 2 Brahe | 1.11 .36 2.00 3 Cavendish | -1.96 .51 -3.85 8 .0049 |
Edward, the target examinee is rated 2.60 score points low (-.84 logits) by Brahe, and 2.00 score points high (1.11 logits) by Cavendish. So Edward's perceived difference in performance (-.84 - 1.11) is -1.96 logits, which has a p=.00 probability of happening by chance.
Target = Element for which the bias or interaction is to be compared in two contexts
N = Element number. Only elements with non-extreme measures are included.
Facet name heading with element name beneath
In one Context:
Target Measr = local measure of element in this context (includes bias) = overall measure for target (Table 7 or Table 13) + bias (Table 13). ">" indicates an extreme low score, "<" an extreme high score
Target S.E. = precision of local ability estimate
Obs-Exp Average = the average difference between the observed and the expected (no bias) ratings for the Target element in this context.
Context
N = Element number. Only elements with non-extreme measures are included.
Facet name heading with element name beneath
In the other Context:
Target Measr = local measure of element in this context (includes bias) = overall measure for target (Table 7 or Table 13) + bias (Table 13). ">" indicates an extreme low score, "<" an extreme high score
Target S.E. = precision of local ability estimate
Obs-Exp Average = the average difference between the observed and the expected (no bias) ratings for the Target element in this context.
Context
N = Element number. Only elements with non-extreme measures are included.
Facet name heading with element name beneath
Target Contrast = difference between the Target Measures in the two Contexts
Joint S.E. = standard error of the difference
t = Welch's corrected version of Student's t-statistic of Contrast / S.E. |
Cohen's d ≈ 2 * t / √ (d.f.) |
d.f. = degrees of freedom of t-statistic (approximate)
Prob. = probability of t-statistic assuming t, d.f. are exact.
The individual interactions are summarized in Table 13, and the observations are summarized in Table 11.
Table 14 in Facets shows pairwise interactions. When there are 3 groups, A, B, C, then the pairings are reported as AB, AC, BC. But they could also be reported as AB, AC, CB or in many other ways. This makes any mean and S.D for the columns of Table 14 dependent on which of the two groups is placed in the left-hand column, and which is in the right-hand column.
Here, the judges are the Contexts. They compare their perceptions of the Targets, the examinees, i.e., the bias is interpreted as Differential Person Functioning, DPF. The first line reads: Brahe (a judge, the Context) perceives David (an examinee, the Target) to have a local ability measure of .25 logits (= -.46 David's overall measure from Table 7 + .71 David's local bias size from Table 13) with a precision of .29 logits, corresponding to David performing 1.54 score points per observation better than expected. Cavendish (a judge, the Context) perceives David (an examinee, the Target) to have an ability measure of -1.05 logits, performing .46 score points per observation worse than expected. The ability difference is 1.30 logits. Statistically, this difference has a t of 2.86 with 8 d.f., i.e., p=.02 for a two-sided t-test.
Table 14.3.1.2 Bias/Interaction Pairwise Report
------------------------------------------------------------------------------------------------------------
| Target | Target Obs-Exp Context | Target Obs-Exp Context | Target Joint Rasch-Welch |
| N Senior sc | Measr S.E. Average N Junior | Measr S.E. Average N Junior |Contrast S.E. t d.f. Prob. |
------------------------------------------------------------------------------------------------------------
| 2 Brahe | -.48 .29 1.54 4 David | 1.50 .36 -.66 5 Edward | -1.98 .46 -4.28 8 .0027 |
| 3 Cavendish | .49 .35 -1.13 4 David | -.78 .36 3.27 5 Edward | 1.27 .50 2.55 8 .0341 |
Here, the examinees compare their perceptions of the judges, i.e., the bias is interpreted as Differential Rater Functioning, DRF. The first line reads: David (an examinee, the Context) perceives Brahe (a judge, the Target) to have a severity of -.48 logits (= .24 Brahe's overall severity in Table 7, - .71 Brahe's local leniency bias size from Table 13) . Edward (an examinee, the Context) perceives Brahe (a judge, the Target) to have a severity measure of 1.50 logits. The difference is -1.98 logits. Statistically, this difference has a t of -4.28 with 8 d.f., i.e., p<.01 for a two-sided t-test.
Table 13 Bias/Interaction Report
----------------------------------------------------------------------------------------------------------
| Obsvd Exp. Obsvd Obs-Exp| Bias Model |Infit Outfit| |
| Score Score Count Average| Size S.E. t | MnSq MnSq | Sq N Senior sc measr N Junior measr|
----------------------------------------------------------------------------------------------------------
| 25 17.3 5 1.54| .71 .29 2.43 | .3 .3 | 11 2 Brahe .24 4 David -.46|
| 15 20.6 5 -1.13| -.58 .35 -1.69 | .5 .5 | 12 3 Cavendish -.09 4 David -.46|
Interpretation:
Observations by Brahe for David are 1.54 score points higher than expected = .71 logits more able
Observations by Cavendish for David are 1.13 score point slower than expected = -.58 logits less able.
Overall pairwise ability swing = .71 - -.58 = 1.29 logits.
Table 14.3.1.1 Bias/Interaction Pairwise Report
---------------------------------------------------------------------------------------------------------------
| Target | Target Obs-Exp Context | Target Obs-Exp Context | Target Joint Rasch-Welch |
| N Junior | Measr S.E. Average N Senior sc | Measr S.E. Average N Senior sc |Contrast S.E. t d.f. Prob. |
---------------------------------------------------------------------------------------------------------------
| 4 David | .25 .29 1.54 2 Brahe | -1.05 .35 -.46 3 Cavendish | 1.30 .45 2.86 8 .0211 |
Interpretation:
For David, the observations by Brahe are 1.54 higher than expected. This corresponds to Brahe (context) perceiving David (target) to have an ability of "David + Bias" = -.46 + .71 = .25
For David, the observations by Cavendish are .46 lower than expected. This corresponds to Cavendish (context) perceiving David (target) to have an ability of "David + Bias" = -.46 + -.58 = -1.04 = -1.05 (due to rounding)
Overall pairwise ability swing = .25 - -1.05 = 1.30 logits
Example: When "higher score = higher measure" and Bias = Ability
Target means "apply the bias to the measure of this element"
Context means "the bias observed when the target element interacts with the context element"
Obsvd Exp. Bias Model
Score Score Measure S.E. Context measr Items measr
186 177 .19 .14 red -.61 tulip -.42
234 243 -.15 .13 green .61 tulip -.42
Bias | target = tulip
Measure Context measr Items measr | bias overall Context
0.19 red -.61 tulip -.42 | .19 + -.42 = -.23 relative to red
-.15 green .61 tulip -.42 | -.15 + -.42 = -.57 relative to green
Effect of imprecision in element estimates
This computation treats the element measures as point estimates (i.e., exact). You can inflate the reported standard errors to allow for the imprecision in those measures. Formula 29 of Wright and Panchapakesan (1969), www.rasch.org/memo46.htm, applies. You will see there that, for dichotomies, the most by which imprecision in the baseline measures can inflate the variance is 25%. So, if you multiply the S.E.s reported in this Table by sqrt(1.25) = 1.12 (and divide the t by 1.12), then you will be as conservative as possible in computing the bias significance.
Multiple-comparisons in Table 14. Here we have to be exact about the hypothesis we are testing. If the (global) hypothesis is "For every pair, the measures are the same", then we need a Bonferroni (or similar) correction. If the (local) hypothesis is "For this pair, the measures are the same", then no correction is needed.
But an easier global test is the "Fixed chi-squared" test at the bottom of Table 13. This tests the global hypothesis explicitly with one operation, rather than indirectly with many corrected t-tests.
Help for Facets Rasch Measurement and Rasch Analysis Software: www.winsteps.com Author: John Michael Linacre.
Facets Rasch measurement software.
Buy for $149. & site licenses.
Freeware student/evaluation Minifac download Winsteps Rasch measurement software. Buy for $149. & site licenses. Freeware student/evaluation Ministep download |
---|
Forum: | Rasch Measurement Forum to discuss any Rasch-related topic |
---|
Questions, Suggestions? Want to update Winsteps or Facets? Please email Mike Linacre, author of Winsteps mike@winsteps.com |
---|
State-of-the-art : single-user and site licenses : free student/evaluation versions : download immediately : instructional PDFs : user forum : assistance by email : bugs fixed fast : free update eligibility : backwards compatible : money back if not satisfied Rasch, Winsteps, Facets online Tutorials |
---|
Coming Rasch-related Events: Winsteps and Facets | |
---|---|
Oct 21 - 22 2024, Mon.-Tues. | In person workshop: Facets and Winsteps in expert judgement test validity - UNAM (México) y Universidad Católica de Colombia. capardo@ucatolica.edu.co, benildegar@gmail.com |
Oct. 4 - Nov. 8, 2024, Fri.-Fri. | On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com |
Jan. 17 - Feb. 21, 2025, Fri.-Fri. | On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com |
May 16 - June 20, 2025, Fri.-Fri. | On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com |
June 20 - July 18, 2025, Fri.-Fri. | On-line workshop: Rasch Measurement - Further Topics (E. Smith, Facets), www.statistics.com |
Oct. 3 - Nov. 7, 2025, Fri.-Fri. | On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com |
Our current URL is www.winsteps.com
Winsteps® is a registered trademark