Table 14 is the pairwise bias report

This is for 32-bit Facets 3.87. Here is Help for 64-bit Facets 4

This Table compares the local (biased?) relative measure of one element with the local relative measure of another element. Table 14 can be output from your main analysis or from the "Output Tables" menu.

 

If no comparisons can be made, then "Table 14: ... - No pairwise terms" is displayed in the Analysis window and output to Table 14.

 

Zscore=, Xtreme= and Arrange= control this Table. This Table presents the bias/interaction information in a pairwise format. It has the same information as Table 13. Table 14 contains several subtables, each containing the same information, but from different perspectives. Depending on how the Tables are conceptualized, they quantify item bias or differential item functioning, DIF, differential person functioning, DPF, differential rater functioning, DRF, differential task functioning, DTF, etc. Item bias and DIF are the same thing. The widespread use of the term "item bias" dates to the 1960's, the term "DIF" to the 1980's.

 

Here are two subtables. Brahe, a judge, has given Brahe rated Edward relatively low and Cavendish relatively high:

 

Table 14.3.1.1  Bias/Interaction Pairwise Report

---------------------------------------------------------------------------------------------------------------

| Target   | Target     Obs-Exp Context     | Target     Obs-Exp Context     |  Target Joint    Rasch-Welch   |

| N Junior | Measr S.E. Average N Senior sc | Measr S.E. Average N Senior sc |Contrast  S.E.   t   d.f. Prob. |

---------------------------------------------------------------------------------------------------------------

| 4 David  |   .25  .29    1.54 2 Brahe     | -1.05  .35    -.46 3 Cavendish |   1.30   .45  2.86     8 .0211 |

 

David, the target examinee is rated 1.54 score points high (.25 logits) by Brahe, and .46 score points low (-1.05 logits) by Cavendish. So David's perceived difference in performance (.25 - -1.05) is 1.30 logits, which has a p=.02 probability of happening by chance.

 

---------------------------------------------------------------------------------------------------------------

| Target   | Target     Obs-Exp Context     | Target     Obs-Exp Context     |  Target Joint    Rasch-Welch   |

| N Junior | Measr S.E. Average N Senior sc | Measr S.E. Average N Senior sc |Contrast  S.E.   t   d.f. Prob. |

---------------------------------------------------------------------------------------------------------------

| 5 Edward |  -.84  .36   -2.60 2 Brahe     |  1.11  .36    2.00 3 Cavendish |  -1.96   .51 -3.85     8 .0049 |

 

Edward, the target examinee is rated 2.60 score points low (-.84 logits) by Brahe, and 2.00 score points high (1.11 logits) by Cavendish. So Edward's perceived difference in performance (-.84 - 1.11) is -1.96 logits, which has a p=.00 probability of happening by chance.

 

Target = Element for which the bias or interaction is to be compared in two contexts

N = Element number. Only elements with non-extreme measures are included.

Facet name heading with element name beneath

In one Context:

Target Measr = local measure of element in this context (includes bias) = overall measure for target (Table 7 or Table 13) + bias (Table 13). ">" indicates an extreme low score, "<" an extreme high score

Target S.E. = precision of local ability estimate

Obs-Exp Average = the average difference between the observed and the expected (no bias) ratings for the Target element in this context.

Context

 N = Element number. Only elements with non-extreme measures are included.

 Facet name heading with element name beneath

In the other Context:

Target Measr = local measure of element in this context (includes bias) = overall measure for target (Table 7 or Table 13) + bias (Table 13). ">" indicates an extreme low score, "<" an extreme high score

Target S.E. = precision of local ability estimate

Obs-Exp Average = the average difference between the observed and the expected (no bias) ratings for the Target element in this context.

Context

 N = Element number. Only elements with non-extreme measures are included.

 Facet name heading with element name beneath

Target Contrast =  difference between the Target Measures in the two Contexts

Joint S.E. =  standard error of the difference

t = Welch's corrected version of Student's t-statistic of Contrast / S.E.
Cohen's d 2 * t / √ (d.f.)

d.f. = degrees of freedom of t-statistic (approximate)

Prob. = probability of t-statistic assuming t, d.f. are exact.

 

The individual interactions are summarized in Table 13, and the observations are summarized in Table 11.

 

Table 14 in Facets shows pairwise interactions. When there are 3 groups, A, B, C, then the pairings are reported as AB, AC, BC. But they could also be reported as AB, AC, CB or in many other ways. This makes any mean and S.D for the columns of Table 14 dependent on which of the two groups is placed in the left-hand column, and which is in the right-hand column.

 

Here, the judges are the Contexts. They compare their perceptions of the Targets, the examinees, i.e., the bias is interpreted as Differential Person Functioning, DPF. The first line reads: Brahe (a judge, the Context) perceives David (an examinee, the Target) to have a local ability measure of .25 logits (= -.46 David's overall measure from Table 7 + .71 David's local bias size from Table 13) with a precision of .29 logits, corresponding to David performing 1.54 score points per observation better than expected. Cavendish (a judge, the Context) perceives David (an examinee, the Target) to have an ability measure of -1.05 logits, performing .46 score points per observation worse than expected. The ability difference is 1.30 logits. Statistically, this difference has a t of 2.86 with 8 d.f., i.e., p=.02 for a two-sided t-test.

 

Table 14.3.1.2  Bias/Interaction Pairwise Report

------------------------------------------------------------------------------------------------------------

| Target      | Target     Obs-Exp Context  | Target     Obs-Exp Context  |  Target Joint    Rasch-Welch   |

| N Senior sc | Measr S.E. Average N Junior | Measr S.E. Average N Junior |Contrast  S.E.   t   d.f. Prob. |

------------------------------------------------------------------------------------------------------------

| 2 Brahe     |  -.48  .29    1.54 4 David  |  1.50  .36    -.66 5 Edward |  -1.98   .46 -4.28     8 .0027 |

| 3 Cavendish |   .49  .35   -1.13 4 David  |  -.78  .36    3.27 5 Edward |   1.27   .50  2.55     8 .0341 |

 

Here, the examinees compare their perceptions of the judges, i.e., the bias is interpreted as Differential Rater Functioning, DRF. The first line reads: David (an examinee, the Context) perceives Brahe (a judge, the Target) to have a severity of -.48 logits (= .24 Brahe's overall severity in Table 7, - .71 Brahe's local leniency bias size from Table 13) . Edward (an examinee, the Context) perceives Brahe (a judge, the Target) to have a severity measure of 1.50 logits. The difference is -1.98 logits. Statistically, this difference has a t of -4.28 with 8 d.f., i.e., p<.01 for a two-sided t-test.

 

Table 13  Bias/Interaction Report

----------------------------------------------------------------------------------------------------------

| Obsvd    Exp.  Obsvd  Obs-Exp|  Bias  Model        |Infit Outfit|                                      |

| Score   Score  Count  Average|  Size   S.E.    t   | MnSq  MnSq | Sq N Senior sc  measr N Junior  measr|

----------------------------------------------------------------------------------------------------------

|    25     17.3     5     1.54|    .71   .29   2.43 |   .3    .3 | 11 2 Brahe        .24 4 David    -.46|

|    15     20.6     5    -1.13|   -.58   .35  -1.69 |   .5    .5 | 12 3 Cavendish   -.09 4 David    -.46|

 

Interpretation:

Observations by Brahe for David are 1.54 score points higher than expected = .71 logits more able

Observations by Cavendish for David are 1.13 score point slower than expected = -.58 logits less able.

Overall pairwise ability swing = .71 - -.58 = 1.29 logits.

 

Table 14.3.1.1  Bias/Interaction Pairwise Report

---------------------------------------------------------------------------------------------------------------

| Target   | Target     Obs-Exp Context     | Target     Obs-Exp Context     |  Target Joint    Rasch-Welch   |

| N Junior | Measr S.E. Average N Senior sc | Measr S.E. Average N Senior sc |Contrast  S.E.   t   d.f. Prob. |

---------------------------------------------------------------------------------------------------------------

| 4 David  |   .25  .29    1.54 2 Brahe     | -1.05  .35    -.46 3 Cavendish |   1.30   .45  2.86     8 .0211 |

 

Interpretation:

For David, the observations by Brahe are 1.54 higher than expected. This corresponds to Brahe (context) perceiving David (target) to have an ability of "David + Bias" = -.46 + .71 = .25

For David, the observations by Cavendish are .46 lower than expected. This corresponds to Cavendish (context) perceiving David (target) to have an ability of "David + Bias" = -.46 + -.58 = -1.04 = -1.05 (due to rounding)

Overall pairwise ability swing = .25 - -1.05 = 1.30 logits

 


 

Example: When "higher score = higher measure" and Bias = Ability

Target means "apply the bias to the measure of this element"
Context means "the bias observed when the target element interacts with the context element"

 

Obsvd  Exp.  Bias    Model                                      

Score   Score Measure S.E.  Context  measr  Items    measr

186       177     .19  .14   red      -.61  tulip     -.42 

234       243    -.15  .13   green     .61  tulip     -.42 

 

Bias                                   | target = tulip   

Measure Context  measr  Items    measr | bias   overall        Context 

0.19    red       -.61  tulip     -.42 |   .19 + -.42 = -.23 relative to red

-.15    green      .61  tulip     -.42 |  -.15 + -.42 = -.57 relative to green 

 

Effect of imprecision in element estimates

This computation treats the element measures as point estimates (i.e., exact). You can inflate the reported standard errors to allow for the imprecision in those measures. Formula 29 of Wright and Panchapakesan (1969), www.rasch.org/memo46.htm, applies. You will see there that, for dichotomies, the most by which imprecision in the baseline measures can inflate the variance is 25%. So, if you multiply the S.E.s reported in this Table by sqrt(1.25) = 1.12 (and divide the t by 1.12), then you will be as conservative as possible in computing the bias significance.

 

Multiple-comparisons in Table 14. Here we have to be exact about the hypothesis we are testing. If the (global) hypothesis is "For every pair, the measures are the same", then we need a Bonferroni (or similar) correction. If the (local) hypothesis is "For this pair, the measures are the same", then no correction is needed.

But an easier global test is the "Fixed chi-squared" test at the bottom of Table 13. This tests the global hypothesis explicitly with one operation, rather than indirectly with many corrected t-tests.


Help for Facets Rasch Measurement and Rasch Analysis Software: www.winsteps.com Author: John Michael Linacre.
 

Facets Rasch measurement software. Buy for $149. & site licenses. Freeware student/evaluation Minifac download
Winsteps Rasch measurement software. Buy for $149. & site licenses. Freeware student/evaluation Ministep download

Rasch Books and Publications
Invariant Measurement: Using Rasch Models in the Social, Behavioral, and Health Sciences, 2nd Edn, 2024 George Engelhard, Jr. & Jue Wang Applying the Rasch Model (Winsteps, Facets) 4th Ed., Bond, Yan, Heene Advances in Rasch Analyses in the Human Sciences (Winsteps, Facets) 1st Ed., Boone, Staver Advances in Applications of Rasch Measurement in Science Education, X. Liu & W. J. Boone Rasch Analysis in the Human Sciences (Winsteps) Boone, Staver, Yale
Introduction to Many-Facet Rasch Measurement (Facets), Thomas Eckes Statistical Analyses for Language Testers (Facets), Rita Green Invariant Measurement with Raters and Rating Scales: Rasch Models for Rater-Mediated Assessments (Facets), George Engelhard, Jr. & Stefanie Wind Aplicação do Modelo de Rasch (Português), de Bond, Trevor G., Fox, Christine M Appliquer le modèle de Rasch: Défis et pistes de solution (Winsteps) E. Dionne, S. Béland
Exploring Rating Scale Functioning for Survey Research (R, Facets), Stefanie Wind Rasch Measurement: Applications, Khine Winsteps Tutorials - free
Facets Tutorials - free
Many-Facet Rasch Measurement (Facets) - free, J.M. Linacre Fairness, Justice and Language Assessment (Winsteps, Facets), McNamara, Knoch, Fan
Other Rasch-Related Resources: Rasch Measurement YouTube Channel
Rasch Measurement Transactions & Rasch Measurement research papers - free An Introduction to the Rasch Model with Examples in R (eRm, etc.), Debelak, Strobl, Zeigenfuse Rasch Measurement Theory Analysis in R, Wind, Hua Applying the Rasch Model in Social Sciences Using R, Lamprianou El modelo métrico de Rasch: Fundamentación, implementación e interpretación de la medida en ciencias sociales (Spanish Edition), Manuel González-Montesinos M.
Rasch Models: Foundations, Recent Developments, and Applications, Fischer & Molenaar Probabilistic Models for Some Intelligence and Attainment Tests, Georg Rasch Rasch Models for Measurement, David Andrich Constructing Measures, Mark Wilson Best Test Design - free, Wright & Stone
Rating Scale Analysis - free, Wright & Masters
Virtual Standard Setting: Setting Cut Scores, Charalambos Kollias Diseño de Mejores Pruebas - free, Spanish Best Test Design A Course in Rasch Measurement Theory, Andrich, Marais Rasch Models in Health, Christensen, Kreiner, Mesba Multivariate and Mixture Distribution Rasch Models, von Davier, Carstensen
As an Amazon Associate I earn from qualifying purchases. This does not change what you pay.

facebook Forum: Rasch Measurement Forum to discuss any Rasch-related topic

To receive News Emails about Winsteps and Facets by subscribing to the Winsteps.com email list,
enter your email address here:

I want to Subscribe: & click below
I want to Unsubscribe: & click below

Please set your SPAM filter to accept emails from Winsteps.com
The Winsteps.com email list is only used to email information about Winsteps, Facets and associated Rasch Measurement activities. Your email address is not shared with third-parties. Every email sent from the list includes the option to unsubscribe.

Questions, Suggestions? Want to update Winsteps or Facets? Please email Mike Linacre, author of Winsteps mike@winsteps.com


State-of-the-art : single-user and site licenses : free student/evaluation versions : download immediately : instructional PDFs : user forum : assistance by email : bugs fixed fast : free update eligibility : backwards compatible : money back if not satisfied
 
Rasch, Winsteps, Facets online Tutorials

Coming Rasch-related Events
Jan. 17 - Feb. 21, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
Feb. - June, 2025 On-line course: Introduction to Classical Test and Rasch Measurement Theories (D. Andrich, I. Marais, RUMM2030), University of Western Australia
Feb. - June, 2025 On-line course: Advanced Course in Rasch Measurement Theory (D. Andrich, I. Marais, RUMM2030), University of Western Australia
Apr. 21 - 22, 2025, Mon.-Tue. International Objective Measurement Workshop (IOMW) - Boulder, CO, www.iomw.net
May 16 - June 20, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
June 20 - July 18, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Further Topics (E. Smith, Facets), www.statistics.com
Oct. 3 - Nov. 7, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com

 

Our current URL is www.winsteps.com

Winsteps® is a registered trademark