Anchoring rating scale structures

This is for 32-bit Facets 3.87. Here is Help for 64-bit Facets 4

Anchoring (fixing) the Rasch-Andrich thresholds (step calibrations) of a rating-scale (or partial-credit scale) enables rating scales in one analysis to be equated to rating scales in another analysis.

 

Anchoring also enables predetermined threshold values to be imposed on an analysis.

 

Anchoring for equating

 

Obtain the Rasch-Andrich thresholds (step calibrations) from Table 8 or from the Anchorfile=.

 

Table 8.1  Category Statistics.

Model = ?,?,?,?,R12

+--------------------------------------------------------------

|          DATA            |  QUALITY CONTROL  |RASCH-ANDRICH|

|Category      Counts  Cum.| Avge  Exp.  OUTFIT| THRESHOLDS  |

|   Score    Used   %    % | Meas  Meas   MnSq |Measure  S.E.|

|--------------------------+-------------------+-------------+-

|  5   0        1   0%   0%| -6.49  -6.84   .7 |             |

|  6   1        5   2%   2%| -5.89  -6.03   .5 | -7.59   1.03|

|  7   2       16   5%   7%| -3.60  -3.39   .7 | -5.82    .58|

|  8   3       33  11%  19%|  -.85   -.80   .8 | -2.63    .37|

|  9   4       72  24%  43%|  1.26   1.38   .7 |  -.47    .25|

| 10   5       93  31%  74%|  3.59   3.56   .8 |  2.20    .19|

| 11   6       59  20%  94%|  6.36   6.19  1.3 |  5.37    .22|

| 12   7       17   6% 100%|  9.08   9.08   .9 |  8.94    .36|

+--------------------------------------------------------------

 

Rating scale = Myscale, R12

5 = bottom, 0, A ; the bottom category has the dummy anchor-value of 0.

6 = , -7.59, A

.....

12 = , 8.94, A

*

 

Pivot points

The Rating scale= specification provides the capability to choose the pivot point in a dichotomy, rating scale, partial credit or other polytomous structure.

 

Example: I am setting the standard for a "Competent" essay-writer. I need to anchor the mean for the essays at a particular point on the scale - "good" (6) and/or halfway between 5 and 6. How do I do this?

 

Here is Table 8 from an unanchored run of Essays.txt. Looking at the "Rasch-Andrich Thresholds" (step calibrations), the standard 0 logit point for the scale is the point on the latent variable at which categories 1 and 9 (the lowest and highest categories) are equally probable.

 

-----------------------------------------------------------------------------------------------------------

|      DATA            |  QUALITY CONTROL  |RASCH-ANDRICH|  EXPECTATION  |  MOST  |.5 Cumul.| Cat|Response|

| Category Counts  Cum.| Avge  Exp.  OUTFIT| THRESHOLDS  |  Measure at   |PROBABLE|Probabil.|PEAK|Category|

|Score   Used   %    % | Meas  Meas   MnSq |Measure  S.E.|Category  -0.5 |  from  |    at   |Prob|  Name  |

-----------------------------------------------------------------------------------------------------------

|  1        4   4%   4%|  -.86   -.74   .8 |             |( -2.70)       |   low  |   low   |100%| lowest |

|  2        4   4%   8%|  -.11   -.58  2.7 |  -.64    .53|  -1.65   -2.21|        |  -1.75  | 17%|        |

|  3       25  24%  31%|  -.36*  -.40   .9 | -2.32    .39|   -.93   -1.26|  -1.48 |  -1.39  | 48%|        |

|  4        8   8%  39%|  -.43*  -.22   .5 |   .83    .25|   -.41    -.66|        |   -.46  | 11%|        |

|  5       31  30%  69%|  -.04   -.03   .8 | -1.48    .24|    .02    -.19|   -.32 |   -.29  | 39%| middle |

|  6        6   6%  74%|  -.46*   .17  4.1 |  1.71    .25|    .44     .23|        |    .34  |  9%| six    |

|  7       21  20%  94%|   .45    .34   .6 | -1.00    .26|    .94     .68|    .35 |    .47  | 47%|        |

|  8        3   3%  97%|   .75    .50   .5 |  2.36    .44|   1.62    1.24|        |   1.37  | 16%|        |

|  9        3   3% 100%|   .77    .62   .8 |   .54    .60|(  2.69)   2.17|   1.45 |   1.70  |100%| highest|

------------------------------------------------------------(Mean)---------(Modal)--(Median)---------------

 

If you want the 0 logit point to be that at which categories 5 and 6 are equally probable, then

 

Rating scale = Creativity,R9 ;Creativity is a rating scale with possible categories 0 to 9

1 = lowest ; name of lowest observed category

5 = middle ; no need to list unnamed categories

6 = six, 0, A      ; anchor point at which 5 and  6 are equally probable at 0 logits

9 = highest ; name of highest observed category

*

 

If you want the 0 logit point to be that at which category 6 is most probable or at which 6 is the expected average rating (- these are the same point on the latent variable):

 

Rating scale = Creativity,R9 ;Creativity is a rating scale with possible categories 0 to 9

1 = lowest ; name of lowest observed category

5 = middle ; no need to list unnamed categories

6 = 1.27, 0, A      ; anchor point to make expected measure of 6 at 0 logits

;  1.27 = "Rasch-Andrich threshold for 6" (1.71) - "Expectation" for 6 (.44)

9 = highest ; name of highest observed category

*

 

If you want the 0 logit point to be that at which 5.5 is the expected average rating:

 

Rating scale = Creativity,R9 ;Creativity is a rating scale with possible categories 0 to 9

1 = lowest ; name of lowest observed category

5 = middle ; no need to list unnamed categories

6 = 1.48, 0, A      ; anchor point to make expected measure of 6 at 0 logits

;  1.27 = "Rasch-Andrich threshold for 6" (1.71) - "Expectation -0.5" for 6 (.23)

9 = highest ; name of highest observed category

*

 

Example 2: I want to set the person-item targeting on dichotomous items at 2 logits offset (= 88% probability of success) instead of the usual 0 logits offset (=50% chance of success). This will make all the persons appear to be 2 logits less able.

 

model = ?,#,MyDichotomy

rating scale = MyDichotomy, R2

0 = 0, 0, A ; place holder

1 = 1, 2, A ; anchored at 2 logits

2 = 2

*

 

+----------------------------------------------------------------------------------------------------------+

|      DATA            |  QUALITY CONTROL  |RASCH-ANDRICH|  EXPECTATION  |  MOST  |  RASCH-  | Cat|Response|

| Category Counts  Cum.| Avge  Exp.  OUTFIT| Thresholds  |  Measure at   |PROBABLE| THURSTONE|PEAK|Category|

|Score   Used   %    % | Meas  Meas   MnSq |Measure  S.E.|Category  -0.5 |  from  |Thresholds|Prob|  Name  |

|----------------------+-------------------+-------------+---------------+--------+----------+----+--------|

|  0       27  79%  79%|  -.79   -.67   .6 |             |(   .87)       |   low  |   low    |100%| 0      |

|  1        7  21% 100%|  2.34   1.87   .3 |  2.00A      |(  3.07)   1.99|   2.00 |   1.99   |100%| 1      |

+----------------------------------------------------------------------------------------------------------+


Help for Facets Rasch Measurement and Rasch Analysis Software: www.winsteps.com Author: John Michael Linacre.
 

Facets Rasch measurement software. Buy for $149. & site licenses. Freeware student/evaluation Minifac download
Winsteps Rasch measurement software. Buy for $149. & site licenses. Freeware student/evaluation Ministep download

Rasch Books and Publications
Invariant Measurement: Using Rasch Models in the Social, Behavioral, and Health Sciences, 2nd Edn, 2024 George Engelhard, Jr. & Jue Wang Applying the Rasch Model (Winsteps, Facets) 4th Ed., Bond, Yan, Heene Advances in Rasch Analyses in the Human Sciences (Winsteps, Facets) 1st Ed., Boone, Staver Advances in Applications of Rasch Measurement in Science Education, X. Liu & W. J. Boone Rasch Analysis in the Human Sciences (Winsteps) Boone, Staver, Yale
Introduction to Many-Facet Rasch Measurement (Facets), Thomas Eckes Statistical Analyses for Language Testers (Facets), Rita Green Invariant Measurement with Raters and Rating Scales: Rasch Models for Rater-Mediated Assessments (Facets), George Engelhard, Jr. & Stefanie Wind Aplicação do Modelo de Rasch (Português), de Bond, Trevor G., Fox, Christine M Appliquer le modèle de Rasch: Défis et pistes de solution (Winsteps) E. Dionne, S. Béland
Exploring Rating Scale Functioning for Survey Research (R, Facets), Stefanie Wind Rasch Measurement: Applications, Khine Winsteps Tutorials - free
Facets Tutorials - free
Many-Facet Rasch Measurement (Facets) - free, J.M. Linacre Fairness, Justice and Language Assessment (Winsteps, Facets), McNamara, Knoch, Fan
Other Rasch-Related Resources: Rasch Measurement YouTube Channel
Rasch Measurement Transactions & Rasch Measurement research papers - free An Introduction to the Rasch Model with Examples in R (eRm, etc.), Debelak, Strobl, Zeigenfuse Rasch Measurement Theory Analysis in R, Wind, Hua Applying the Rasch Model in Social Sciences Using R, Lamprianou El modelo métrico de Rasch: Fundamentación, implementación e interpretación de la medida en ciencias sociales (Spanish Edition), Manuel González-Montesinos M.
Rasch Models: Foundations, Recent Developments, and Applications, Fischer & Molenaar Probabilistic Models for Some Intelligence and Attainment Tests, Georg Rasch Rasch Models for Measurement, David Andrich Constructing Measures, Mark Wilson Best Test Design - free, Wright & Stone
Rating Scale Analysis - free, Wright & Masters
Virtual Standard Setting: Setting Cut Scores, Charalambos Kollias Diseño de Mejores Pruebas - free, Spanish Best Test Design A Course in Rasch Measurement Theory, Andrich, Marais Rasch Models in Health, Christensen, Kreiner, Mesba Multivariate and Mixture Distribution Rasch Models, von Davier, Carstensen
As an Amazon Associate I earn from qualifying purchases. This does not change what you pay.

facebook Forum: Rasch Measurement Forum to discuss any Rasch-related topic

To receive News Emails about Winsteps and Facets by subscribing to the Winsteps.com email list,
enter your email address here:

I want to Subscribe: & click below
I want to Unsubscribe: & click below

Please set your SPAM filter to accept emails from Winsteps.com
The Winsteps.com email list is only used to email information about Winsteps, Facets and associated Rasch Measurement activities. Your email address is not shared with third-parties. Every email sent from the list includes the option to unsubscribe.

Questions, Suggestions? Want to update Winsteps or Facets? Please email Mike Linacre, author of Winsteps mike@winsteps.com


State-of-the-art : single-user and site licenses : free student/evaluation versions : download immediately : instructional PDFs : user forum : assistance by email : bugs fixed fast : free update eligibility : backwards compatible : money back if not satisfied
 
Rasch, Winsteps, Facets online Tutorials

Coming Rasch-related Events
Jan. 17 - Feb. 21, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
Feb. - June, 2025 On-line course: Introduction to Classical Test and Rasch Measurement Theories (D. Andrich, I. Marais, RUMM2030), University of Western Australia
Feb. - June, 2025 On-line course: Advanced Course in Rasch Measurement Theory (D. Andrich, I. Marais, RUMM2030), University of Western Australia
Apr. 21 - 22, 2025, Mon.-Tue. International Objective Measurement Workshop (IOMW) - Boulder, CO, www.iomw.net
May 16 - June 20, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com
June 20 - July 18, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Further Topics (E. Smith, Facets), www.statistics.com
Oct. 3 - Nov. 7, 2025, Fri.-Fri. On-line workshop: Rasch Measurement - Core Topics (E. Smith, Winsteps), www.statistics.com

 

Our current URL is www.winsteps.com

Winsteps® is a registered trademark