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What were the historic origins of classical test theory?
What have been major milestones in its development?

lassical test theory is an ema-
nation of the early 20th cen-
tury. It was born of a ferment the
ingredients of which included three
remarkable achievements of the
previous 150 years: A recognition of
the presence of errors in measure-
ments, a conception of that error as
a random variable, and a conception
of correlation and how to index it.
Then in 1904 Charles Spearman
showed us how to correct a correla-
tion coefficient for attenuation due
to measurement error and how to
obtain the index of reliability
needed in making the correction.
Spearman’s demonstration marked
the beginning, as I see it, of classical
test theory. Subsequently, the
framework of classical theory was
elaborated and refined by Spear-
man, George Udny Yule, Truman
Lee Kelley, and others over the
quarter century or so following
1904. Another milestone was laid in
1937 with the publication of the
Kuder-Richardson formulas. This
event was followed, shortly there-
after, by the idea of lower bounds to
reliability and the framework for en-
hanced understanding found in the
work of Louis Guttman. The culmi-
nation of classical test theory was
realized in the systematic treatment
it received from Melvin Novick
(1966; Lord & Novick, 1968).
What follows is an attempt to add
a little flesh to the bare bones of the
foregoing outline. Before doing so,
however, I should be clear about
what I take classical test theory
to be.

Classical Theory Circumscribed

Classical® test theory is founded on
the proposition that measurement
error, a random latent variable, is a
component of the observed score
random variable. The latter vari-
able is realized in the measure-
ments that may be taken of a
characteristic of the persons? in
some more-or-less well-defined pop-
ulation. Add to this proposition (a) a
result that is true by construction—
namely, that the error variable has
zero covariance with that other la-
tent component of observed mea-
surements, the true score variable
(Lord & Novick, 1968)—and (b) a
crucial assumption that the error
component of a measure is indepen-
dent of the error components of
other measures, either of the same
characteristic or of different charac-
teristics, and one is able to prove the
basic theorems of classical test the-
ory. Essential adjuncts to the theory
are the ancillary assumptions in-
voked and experimental procedures
followed in estimating coefficients of
reliability and standard errors of
measurement, two of classical test
theory’s basic results.

The Zeitgeist

A prominent feature of the zeitgeist
at the turn of the 20th century was
the notion of errors in scientific ob-
servations. As early as the 17th
century, apparently, “Galileo had
... reasoned that errors of observa-
tion are distributed symmetrically

and tend to cluster around their
true value” (Read, 1985,
p. 348). “By the eighteenth cen-
tury,” according to Churchill Eisen-
hart (1983a),

the practice of taking the arith-
metic mean [of a set of observa-
tions] “for truth” had become
fairly widespread. Nonetheless,
Thomas Simpson (1710-1761)
wrote to the president of the
Royal Society in March 1755 that
some persons of considerable note
maintained that one single obser-
vation, taken with due care, was
as much to be relied on as the
mean of a great number. As this
appeared to him to be a matter of
much importance, he said that he
had a strong inclination to ascer-
tain whether by the application of
mathematical principles the util-
ity and advantage of the practice
might be demonstrated. Measure-
ments and functions of measure-
ments, such as their arithmetic
means, are not amenable to math-
ematical theory, however, as long
as individual measurements are
regarded as unique entities, that
is as fixed numbers y;, vy . . . A
mathematical theory of measure-
ments, and of functions of mea-
surements, is possible only when
particalar measurements y;, ys,

. are regarded as instances
characteristic of hypothetical
measurements Y,, Y,, . . . that
might have been, or might be,
yielded by the same measurement
process under the same circum-
stances. Consequently, Simpson
hypothesized that the respective
chances of the different errors to

Ross E. Traub is a Professor at the On-
tario Institute for Studies in Education,
OISE, University of Toronto, 252 Bloor
St. W., Toronto, Ontario, Canada M5S
1V6. His specializations are test theory
and educational assessment.

Educational Measurement: Issues and Practice



which any single observation is
subject could be expressed as a
discrete probability distribution
of error. .. .” (p. 531)

By the beginning of the 19th cen-
tury, astronomers had come to rec-
ognize errors in observations as an
area worthy of research. Carl
Friedrich Gauss derived the normal
distribution while trying to prove
that the mean of many observations
of an unknown quantity, such as a
parameter of the orbit of a planet, is
the most likely value of that quan-
tity (Eisenhart, 1983b; Read, 1985).
In other work —for example, that of
Friedrich Wilhelm Bessel*—errors
in astronomical observations were
thought to be composed of many in-
dependent, elementary parts. The
distribution of the sum of these er-
rors was shown to be normal under
various assumptions, hence the ref-
erences, commonplace in the 19th
century, to the law of errors in ob-
servations (Eisenhart, 1983b; Read,
1985), Later in the 19th century,
however, as noted by O. B Sheynin
(1968),

[the normal distribution,| as far
as the theory of errors is con-
cerned, had been almost forgotten
and even the concept of random
errors of observation . .. [had be-
come] divorced from the concept
of random quantities in the the-
ory of probability.... A qualify-
ing remark should be added: ...
in the second half of the 19th
century a definition of a ran-
dom quantity as “dependent on
chance” and possessing a certain
law of distribution had become

. natural. . . . As to random
errors, these were usually taken
to be errors with certain proba-
bilistic properties, their specific
distribution . . . being not so
important. . . . It seems that
Vassiliev (1885, Theory of Proba-
bilities, in Russian, a lithographic
edition, Kazan, p. 133) was the
first who definitely held that ran-
dom errors of observation are to
be ranked among random quanti-
ties. (pp. 236-237)

We might expect the mnotion of
correlation, that other essential fea-
ture of Spearman’s zeitgeist, to have
emerged from a study of the distri-
bution of joint errors. Indeed, sev-
eral individuals separately derived
expressions resembling the “ordi-
nates of the probability surface of
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normal correlation for two vari-
ables” (Walker, 1929, p. 93). These
individuals included Robert Adrain,
an Irishman who emigrated to the
U. S. and taught at Rutgers, Colum-
bia College, and the University of
Pennsylvania and published such
an equation in 1808; Pierre-Simon,
Marquis de LaPlace published such
an equation in 1810; Giovanni Anto-
nio Amedeo Plana, professor of as-
tronomy at Turin, published an
equation in 1812; Gauss in 1823,
and Auguste Bravais, professor of
astronomy at Lyons and professor of
physics at Paris, in 1846. But none
of these scholars seems to have in-
terpreted the cross-product term in
the exponents of their expressions
as an indicator of covariation or cor-
relation. This enormous idea was
left to Francis Galton. Although he
did not actually derive the formula
for the bivariate normal distribu-
tion—it can be argued that this was
done by a Cambridge mathemati-
cian named J. D. Hamilton Dickson,
to whom Galton gave the relevant
concepts®—Galton did originate the
basic ideas we associate with the bi-
variate distribution. The notion of
the scatterplot, on which is dis-
played the two regression lines, can
be found in Galton’s 1885 presiden-
tial address to the Anthropological
Section of the British Association,
subsequently an article published in
1886 in the Journal of the Anthropo-
logical Institute under the title “Re-
gression Towards Mediocrity in
Hereditary Stature.”® The term cor-
relation was first used in a technical
sense 2 years later in an article en-
titled “Co-Relations and Their Mea-
surement” {(Galton, 1888). Galton,
however, used the symbol r to refer
to reversion or regression. Credit for
calling r the coefficient of correlation
belongs to Francis Y. Edgeworth,
and dates from 1892 (Boring, 1957).

Karl Pearson contributed impor-
tant mathematical work in support
of his friend Galton’s coefficient. For
example, Pearson (1896) proved
that the best value of r is the covari-
ance divided by the product of the
standard deviations.

Defining Achievements in the

History of Classical Test Theory
We find ourselves at the very begin-
ning of the 20th century, a time

when the idea of errors in measure-
ments had become widely accepted.
Also, the coefficient of correlation
was well established as an impor-
tant statistical concept, although
Pearson’s product moment expres-
sion had not yet gained acceptance
as the computational formula of
choice. In addition, we encounter
around this time the first scientific
publications in which coefficients of
correlation were the principal re-
sults of the research. For example,
Karl Pearson, who, like Galton, had
an abiding interest in eugenics, in-
vestigated the correlation between
characteristics of pairs of brothers
(Pearson, 1904; Pearson & Lee,
1903). Pearson found, to his aston-
ishment, that the magnitude of this
correlation was about 0.5, regard-
less of characteristic, physical or
psychical. So this was the time, and
this was the context for the first of
the defining achievements in the
history of classical test theory—the
correction of a correlation coefficient
for attenuation due to measurement
error. In what follows, I describe
this and four other milestones
marking the development of classi-
cal test theory.

Spearman’s correction for attenu-
ation. Spearman was a psychologist.
At the turn of the 20th century, he
was just beginning his study of in-
telligence. In the course of this early
work, he had discovered that inde-
pendent measurements of a psychi-
cal characteristic of a person—for
example, mental ability—vary in a
random—Spearman called it an
“accidental” (1904, p. 89)—fashion
from one measurement trial to an-
other. In other words, the coefficient
of correlation between such inde-
pendent measurements for a group
of persons is not perfect. Spearman
then had the insight that the ab-
solute value of the coefficient of cor-
relation between the measurements
for any pair of variables must be
smaller when the measurements for
either or both variables are influ-
enced by accidental variation than
it would otherwise be. Eliminating
this attenuating effect of accidental
error was just one of the matters, al-
beit in retrospect the most impor-
tant of those matters, addressed by
Spearman in his 1904 article, enti-
tled “The Proof and Measurement of



Association Between Two Things”
and published in the American
Journal of Psychology.

Spearman’s article angered Karl
Pearson. The reason was that
Spearman had had the temerity to
challenge Pearson’s conclusion that
the coefficient of correlation be-
tween pairs of brothers was 0.5 for
psychic characteristics, just as it
had been found to be for physical
characteristics. Using reliability es-
timates from his own work, Spear-
man estimated the corrected
correlation coefficient for mental
ability to be 0.8.

Pearson was co-editor of a newly
founded journal, Biometrika. He in-
serted the following petulant note in
his 1904 article in that journal on
the correlation between selected
characteristics of sibling pairs.

I hardly know whether it is need-
ful to refer here to a recent article
by Mr. C. Spearman . . . criticis-
ing my results for the similarity
of inheritance in the physical and
psychical characters. Without
waiting to read my paper in full
he seems to think I must have
disregarded “home influences”
and the personal equation of the
school teachers. He proceeded to
“correct” my results for the error
of what he calls dilation on the
double basis (i) of a formula in-
vented by himself, but given with-
out proof, and (ii) of his own
experience that two observers’ ob-
servations or measurements of
the same series of two characters
were such that the correlation be-
tween their determinations was
.58 in one case and .22 in the
other. The formula invented by
Mr. Spearman for his so-called
“dilation” is clearly wrong, for ap-
plied to perfectly definite cases, it
gives values greater than unity
for the correlation coefficient. As
to his second basis, all I can say is
that if the correlation between
two observers of the same thing
in Mr. Spearman’s case can be as
low as .22, he must have em-
ployed the most incompetent ob-
servers, or given them the most
imperfect instructions, or chosen
a character [more] suitable for
random guessing than obser-
vation in the scientific sense.
Mr. Spearman says that “it is diffi-
cult to avoid the conclusion that
the remarkable coincidence an-
nounced between physical and
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mental heredity can be [nothing]
more than mere accidental coinei-
dence” (p. 98). I think I may safely
leave him to calculate the odds for
or against this most remarkable
“mere accidental coincidence”. . . .
Perhaps the best thing at present
would be for Mr. Spearman to
write a paper giving algebraic
proofs of all the formulae he has
used; and if he did not discover
their erroneous nature in the
process, he would at least provide
tangible material for definite crit-
icism, which it is difficult to apply
to mere unproven assertions.
(Pearson, 1904, p. 160)

Stung into responding, Spearman
published a proof of the correction
for attenuation in 1907, again using
the American Journal of Psychol-
ogy. Subsequently, a proof in a form
often encountered in present day
textbooks on educational and psy-
chological measurement was given
by Spearman (1910) and also by
William Brown (1910), both of
whom ascribed it to Yule. This de-
rivation stressed that the error com-
ponents of all measures should be
independent, and hence uncorre-
lated. Spearman’s earlier “proof”
had not emphasized this restriction
(Walker, 1929).

Pearson was not the only critic of
the correction for attenuation. In
particular, Brown (1910) challenged
it on the grounds that measurement
error is not really random (acciden-
tal). Brown proposed a way of test-
ing the equality of the covariances
Slxyy;) and S(xay,), where xy, %o, ¥,
and y, are observed-score variables.
Assuming x, is parallel to x; and y,
is parallel to y,, then both these co-
variances, according to classical the-
ory, should equal S(xy), where x and
y are the true-score variables associ-
ated with {x;, x,} and {y,, ys}, respec-
tively. Brown (1913) reported
results based on an application of
this proposal, results he claimed did
show that measurement errors are
not accidental.

Spearman was aware of Brown’s
criticism, among others, and pre-
sciently responded as follows in his
British Journal of Psychology arti-
cle of 1910:

1. Spearman reiterated his posi-
tion that of the two kinds of
errors in measurement, “regu-

lar” and “accidental” (p. 273),
the correction formula applies
only to the latter. As regards
Brown’s contention that acci-
dental errors can be correlated,
Spearman observed that, if er-
rors were indeed found to be
linked (as might be the case,
e.g., if a person were ill at the
time of taking both tests x and
), then the investigator should
employ a better experimental
design.

2. It had been suggested accord-
ing to Spearman (1910, p. 272)
that investigators should make
measurements so “efficient”
that no correction would be
needed. Spearman wondered
how an investigator would
know his measurements were
efficient enough except by
using the correction formula?

3. To Pearson’s criticism that the
correction could produce coeffi-
cients greater than one, Spear-
man countered that this might
occur due to sampling error. He
recommended (p. 277) the coef-
ficient be set to one whenever
this happened.

The Spearman-Brown formula.
Coefficients of reliability are needed
in order to apply the correction for
attenuation. In his 1904 article,
Spearman had assumed the avail-
ability of two independent measure-
ments of both the characteristics for
which a corrected correlation coeffi-
cient is desired. The breakthrough,
apparently achieved independently
by Spearman and Brown, to a for-
mula by which to calculate a relia-
bility coefficient from the two halves
of just one composite measure was
published in adjacent articles in a
1910 issue of The British Journal of
Psychology. Brown’s proof of the for-
mula is the more elegant and bears
the stamp of Yule.

During the second and third
decades of the 20th century, numer-
ous experiments were conducted to
test predictions of the Spearman-
Brown formula. A thoughtful review
of publications emanating from this
preoccupation of early psychometri-
cians can be found in the notes on
test theory prepared by Louis Leon
Thurstone (1932).

The index of reliability and other
results. It is a worthwhile experi-
ence, though in the late 20th cen-
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tury a humbling one, to read the ar-
ticles on test theory that were pub-
lished between 1910 and 1925 by
Spearman, Brown, and Kelley,
among others, These documents
contain a great many of the basic re-
sults of classical test theory. Kelley’s
1923 text, Statistical Methods, in-
cluded a compilation of these results
in a section on reliability theory.
Kelley also stated in this text the
definition of reliability that he
championed throughout his long ca-
reer: the coefficient of correlation
between “comparable tests” (p. 203).
Kelley laid down three conditions
for test comparability:

(1) sufficient fore-exercise should
be provided to establish an atti-
tude or set, thus lessening the
likelihood of the second test being
different from the first, due to a
new level of familiarity with the
mechanical features, etc.; (2) the
elements of the first test should
be as similar in difficulty and
type to those in the second, pair
by pair, as possible; but (3} should
not be so identical in word or form
as to commonly lead to a memory
transfer of correlation between
errors. (p. 203)

Kelley was critical of Brown
(1910) for using the term reliability
coefficient to refer to the correlation
between scores on repeated admin-
istrations of the same test. Brown’s
definition fails to meet the third of
Kelley’s conditions. (Kelley’s conclu-
sion: “Accordingly the repetition of a
test to secure a reliability coefficient
is to be deprecated” Kelley, 1923,
p. 203),

An important result, used by
Spearman in his 1910 proof of the
prophecy formula, was the expres-
sion for the correlation between two
composite measures in terms of the
variances and covariances of the
components. From this result, Abel-
son (1911, p. 314) derived the for-
mula for what came to be known
several years later as the index of
reliability.® It seems this name was
coined quite by accident. Kelley in-
dependently derived the formula for
the index in 1916 and then in using
it wrote that “the extent to which
the grade determined by means of
this test of forty words would corre-
late with the true spelling ability of
the individual is probably an even
more significant index of reliability”

Winter 1997

(p. 74). Walker reported that
“Iwlhen Munroe published the for-
mula in his Introduction to the The-
ory of Educational Measurements
(1923) he ... [set the phrase in
capital letters], ascribed it to Kelley,
and established Index of Reliability
as a definite term™(1929, p. 118).

The Kuder-Richardson formulas.
Writing the coefficient of correlation
between two composite measures in
terms of the variances and covari-
ances of the measures’ components
made it possible to study the effects
of the characteristics of item scores
on the characteristics of total test
scores. By 1936, Marion Richard-
son, in an article in the first volume
of Psychometrika, had demon-
strated several propositions for
tests composed of discrete, dichoto-
mously scored items. Invoking the
assumption that all test items have
equal variances—Richardson noted
that this assumption is close to true
for a wide range of item difficulty
values—he showed that “the rejec-
tion of items with low item-test cor-
relations raises the reliability of a
test, if the number of items is held
constant” (p. 72). Richardson also
showed that “for tests of homoge-
neous [item] difficulty and constant
length, the true variance is propor-
tional to the average item intercor-
relation” (p.75).

Given his work on the relation-
ship between item and total test
scores, it is perhaps not surprising
to find Richardson a co-author, with
Frederic Kuder, of the blockbuster
article of 1937, the one containing
the famous Formulas 20 and 21. (In
a footnote to the article, Kuder and
Richardson reported they had inde-
pendently arrived at the results
contained in the article. They ap-
parently discovered this fact quite
by accident, at which time they de-
cided to publish the results jointly.)
Kuder and Richardson began their
article with a critique of existing ap-
proaches to the estimation of relia-
bility. Of the test-retest method,
they said,

[Using] the same form gives, in

general, estimates that are too

high because of material remem-
bered on the second application of
the test. This memory factor can-
not be eliminated by increasing
the length of time between the
two applications, because of vari-

able growth in the function tested
within the population of individu-
als. These difficulties are so seri-
ous that the method is rarely
used. (p. 1561)

Of the split-half approach, Kuder
and Richardson concluded that “al-
though the authors have made no
actual count, it seems safe to say
that most technicians use the split-
half method of estimating reliabil-
ity” (p. 151). They then observed
that the number of splits possible

for an n-item test (n being an even
!

number) is 7Nz, a number S0
{(5)]

2

large for any test of reasonable
length that the reliability estimates
from all possible split-halves of the
test are very likely to vary consider-
ably. So the issue for Kuder and
Richardson was to devise a proce-
dure by which the information in
the item scores of a test could be
used to produce a single estimate of
reliability.

In deriving Formulas 20 and 21,
Kuder and Richardson began by
writing the following expression—
their Equation 3—for the correlation
of a test composed of n dichoto-
mously scored items with a hypo-
thetical second test of n such items:

n n
o} ‘2 p;q; +2 T 04
- i=1 =1

Iy =
of

, (3

where o7 is the test variance,

n
Y p;g; is the sum of the item vari-
il

ances, and Y, 7:ip:q;i is the sum of the
=1

item true score variances. The prob-
lem Kuder and Richardson set for
themselves was that of estimating
r;, the item reliability coefficient.
They did so under various assump-
tions. Those leading to Equation 20
were that the matrix of interitem
correlation coefficients has Rank 1
and that all interitem correlation
coefficients are equal. Setting r;
equal to r;, the interitem correla-
tion coefficient, Kuder and Richard-
son derived the result:
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which, when substituted in Equa-
tion 3, and simplified, gives

2 _—
B = n |:Gt npq]
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Formula 21 was derived under the
additional assumption of equal item
difficulty indices.

Kelley criticized the KR formulas
in a 1942 article in Psychometrika
on the grounds that they are valid
only for tests “with unity of pur-
pose” —that is, for tests composed of
items that share just one factor in
common. Reiterating his long-stand-
ing advocacy of the parallel-test
design for reliability estimation,
Kelley went on to say “we conclude
that a belief that two or more mea-
sures of a mental function exist is
prerequisite to the concept of relia-
bility, and, further, not only that
they exist but that they are avail-
able before a measure of reliability
is possible” (p. 76). As a further chal-
lenge to the KR formulation, Kelley
demonstrated that a test with zero
interitem covariances could produce
a reasonable correlation with a
“similar” (p. 81) test, even though its
KRy, index would be zero.

It is obvious, a half-century later,
that Kelley'’s view did not prevail.
The KR formulations quickly re-
ceived widespread acceptance, abet-
ted in part by the publication of an
article by Paul Dressel (1940). Dres-
sel showed that, when all the items
of a test intercorrelate perfectly and
all item variances are equal, KRy
attains the value of 1; otherwise, it
is less. He further demonstrated
that KRy, can take values less than
0. Dressel also increased the applic-
ability of KRy, by deriving a version
for tests to which the correction for
guessing is applied.

Lower bounds to reliability. Per-
haps it was Dressel’s demonstration
that KRy can be negative that
marks the beginning of work on
lower bounds to reliability. Alterna-
tively, a case might be made for
Philip Rulon’s (1939) article in the
Harvard Educational Review. Rulon
introduced the notion, not the name,
of essentially tau-equivalent test
halves. The halves of a test are es-
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sentially tau equivalent if, for any
examinee in the test population, the
true score on one test half differs
from the true score on the other half
by a constant, which is the same for
all examinees. Also, under the es-
sentially tau-equivalent assump-
tion, as distinct from the parallel
test-halves assumption, the error
variance for an examinee on one
test half is not necessarily equal to
the error variance for the examinee
on the other half (see Lord &
Novick, 1968, p. 50).

Whatever the wellspring of work
on lower bounds, Louis Guttman
(1945) published the first article, as
far as I know, in which lower bounds
to reliability are explicitly derived.
But this Psychometrike article is
important for a reason other than
the lower bounds it contains.
Guttman also offered a theoretical
framework within which to treat, if
not actually to reconcile, the antag-
onistic views of Brown and Kelley
regarding how the reliability coeffi-
cient should be estimated. Guttman
did this by first identifying three
sources of variation in test re-
sponses—persons, items, and trials.
Guttman defined error variance ex-
clusively in terms of variation in re-
sponses over the universe of trials.
This definition leads to a proof of
total test variance as the sum of
true-score and error variance, with-
out the need to assume zero covari-
ance of true and error scores. (The
latter assumption lies at the heart
of Yule’s proof of the correction for
attenuation.) Defining the reliabil-
ity coefficient “as the complement of
the ratio of error variance to total
[test] variance” (p. 257), Guttman
then went on to demonstrate (pp.
267-268) that the reliability coeffi-
cient can be estimated as the corre-
lation between the test scores for a
group of examinees on two “experi-
mentally independent” (p. 264) tri-
als of a test. Given the results from
only one trial, however, Guttman
showed that the best result possible
is an estimate of a lower bound to
reliability. This result was shown to
rest on the assumption

that the errors of observation are
independent between items and
between persons over the uni-
verse of trials. In the conventional
[Yule] approach, independence is
taken over persons rather than
trials, and the problem of observ-

ability from a single trial is not
explicitly analyzed. (p. 257)

Guttman derived six lower
bounds to reliability, of which three
are noted here. One of these is a
generalization of KRy to tests com-
posed of items scored on any scale,
dichotomous or otherwise. He la-
beled this index I's. Subsequently, I';
became better known as coefficient
alpha (Cronbach, 1951). Two of the
other lower bounds to reliability
were labeled, not surprisingly, T';
and I';, with the former typically
smaller than alpha, the latter typi-
cally larger. Research on lower
bounds to reliability constitutes a
small but still active line of psycho-
metric research.

Formalization

Various attempts to formalize clas-
sical test theory have been made
over the years. Already mentioned
is the section on reliability in Kel-
ley’s (1923) Statistical Method.
Another early work is that by Thur-
stone (1932). The next presentation
of note is Theory of Mental Tests by
Harold Gulliksen (1950). The culmi-
nation of such efforts as these was
realized in the work of Melvin
Novick (1966) and in the early chap-
ters of Statistical Theories of Mental
Test Scores (1968) by Frederic Lord
and Novick.

Concluding Remarks

Several important topics from the
realm of classical test theory have
not been covered in this brief retro-
spective. Among them are the ef-
fects of range restriction on the
magnitude of the reliability coeffi-
cient, the application of analysis of
variance to the study of measure-
ment error and reliability (this be-
fore the advent of generalizability
theory), and the modeling of test
data generally addressed under the
topic of congeneric models. Clearly,
there is more to classical test theory,
and its history, than the work re-
viewed in this article.

Lest we leave this topic thinking
classical test theory an unduly
important area of research in the
history of empirical research in psy-
chology and education, we will find
it salutary to reflect on the following
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remarks from the preface of the
1932 edition of Thurstone’s notes on
test theory:

Since this volume is devoted to
the validity and reliability con-
cepts in their applications to men-
tal tests and related correlational
procedures, it is only fair to say
that personally I do not believe
that these correlational methods
and particularly the reliability
formulae have been responsible
for much that can be called fun-
damental, important or signifi-
cant in psychology. On the
contrary, the correlational meth-
ods have probably stifled scien-
tific imagination as often as they
have been of service. As tools in
their proper place they are useful
but as the central theme of men-
tal measurement they are rather
sterile.

Notes

This article is a revised version of a
paper presented at the 1996 Annual
Meeting of the National Council on
Measurement in Education (Session
B1), New York.

! Something classical, according to
Webster’s New Collegiate Dictionary, is
accepted as standard and authoritative,
as distinguished from novel or experi-
mental: viz. classical physics.

2 Classical test theory applies to the
measurements of a characteristic of the
members of any collection of objects
whatsoever. In particular, it is not re-
stricted, as the wording here might
imply, to measurements of human char-
acteristics.

3 Although the normal distribution is
commonly referred to as the Gaussian
distribution, priority in its formulation
rightfully belongs to Abraham de
Moivre, who obtained it in 1733 (Read,
1985).

¢ In the 18th and early 19th centuries,
astronomers were required to make dif-
ficult judgments, based on a combina-
tion of auditory and visual cues, in order
to time stellar transits. A well-known
story from the history of science (Bor-
ing, 1957) is the firing in 1796 of
Kinnebrook, an assistant to Maskelyne,
the Astronomer Royal of England.
Kinnebrook was relieved of his job for
giving inaccurate readings of stellar
transits. Although he had provided
readings in agreement with Magke-
lyne’s 18 months prior to his dismissal,
the hapless Kinnebrook by August 1795
had begun to give times that differed
from Maskelyne’s by one-half second.
Subsequently, Kinnebrook’s readings
grew even more discrepant, so by the
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time of his firing they were almost a sec-
ond later than Maskelyne’s. This matter
might not have attracted much interest
had not Maskelyne recorded it in Astro-
nomical Observations at Greenwich
(1799). Seventeen years later, in a
history of Greenwich Observatory pub-
lished in German, Kinnebrook’s tribula-
tion came to the attention of Bessel, an
astronomer at Konigsberg. Bessel con-
ducted a series of studies culminating in
the notion of the personal equation—
the name given the systematic differ-
ence in recording times found to
characterize the stellar transits of al-
niost any pair of astronomers. From the
perspective of reliability theory, the per-
sonal equation itself was not a highly
significant discovery, for it refers to sys-
tematic error, not the random error
treated by reliability theory. What in-
terests us, instead, is Bessel’s finding
that the personal equation itself is a
variable quantity, one that differs from
one pair of astronomers to another. This
variation suggests random or accidental
errors in observations, errors that, if
neither controllable nor amenable to
elimination, at the least demand an ex-
planation grounded in a theory or a sci-
entific law.

5Karl Pearson (1930} noted that
Dickson did not actually write down the
equation for the bivariate normal distri-
bution but stopped one step short of
doing so.

6 According to Walker (1929, pp.
98-101), H. P. Bowditch published a
two—way table of height and age for
24,000 Boston school boys in 1877 in a
manuscript entitled Growth of Chil-
dren. Although he described one of the
regression lines of a bivariate distribu-
tion in his work, Bowditch neither pro-
duced both lines nor conceived of a
measure of the relationship between the
variables.

" Another of Galton’s ideas was that
the (normal) law of errors in observa-
tions might describe the frequency dis-
tributions of measurements of such
human characteristics as mental ability,
This idea was accepted readily enough
by John Venn (1888), who wrote as fol-
lows: “That our mental qualities, if they
could be submitted to accurate mea-
surement, would be found to follow the
usual Law of Error may be assumed
without much hesitation” (p. 49). Venn
expressed skepticism, however, over the
idea that a normal distribution of men-
tal measurements is yet another mani-
festation of the law of error:

When we perform an operation our-
selves with a clear consciousness of
what we are aiming at, we may quite
correctly speak of every deviation
from this as being an error; but when

Nature presents us with a group of
objects of every kind, it is using a
rather bold metaphor to speak in this
case also of a law of error, as if she
had been aiming at something all the
time, and had like the rest of us
missed her mark more or less in every
instance. (p. 42)

8 Walker (1929, p. 117) suggested the
derivation of the formula may have
been given to Abelson by Spearman.
Abelson’s article is, however, unclear on
this point. The article contains two
appendices. The first is described as
having been “kindly supplied by Prof.
Spearman” (p. 312). But the second ap-
pendix, which contains the index of
reliability, bears no attribution to
Spearman.
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A Perspective on the History of

Generalizability Theory

Robert L. Brennan
University of lowa

What psychometric and scientific perspectives influ-
enced the development of G theory? What practical
testing problems gave impetus to its adoption? What

work remains to be done?

verviews of various parts of

the history of generalizability
(G) theory are provided elsewhere.
An indispensable starting point is
the preface and parts of the first
chapter of Cronbach, Gleser, Nanda,
and Rajaratnam (1972) entitled The
Dependability of Behavioral Mea-
surements: Theory of Generalizabil-
ity for Scores and Profiles. The
Cronbach et al. monograph is still
the most definitive treatment of G
theory. Shavelson and Webb (1981)
review the G theory literature from
1973-1980, and Shavelson, Webb,
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and Rowley (1989) cover additional
contributions in the 1980s. A very
brief historical overview is provided
by Brennan (1983, 1992a, pp. 1-2).
In addition, Cronbach (1976, 1989,
1991) offers numerous perspectives
on G theory and its history. Cron-
bach (1991) is particularly rich with
first-person reflections.

This historical overview is not in-
tended to repeat everything already
covered in published reviews, al-
though a summary is provided.
Parts of this article are based
largely on my personal experience

with G theory. Consequently, this
article provides a somewhat idiosyn-
cratic perspective on the history of G
theory and what I perceive as unfin-
ished work for the theory. Almost
certainly, other reviewers would see
the landscape somewhat differently.

Theory Development and Enabling
Work

In discussing the genesis of G
theory, Cronbach (1991) states:

In 1957 1 obtained funds from the
National Institute of Mental
Health to produce, with Gleser’s
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