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ABSTRACT 

 

Factor analysis is a powerful technique for investigating multidimensionality in observational data, 

but it fails to construct interval measures.  Rasch analysis constructs interval measures, but only 

indirectly flags the presence of multidimensional structures.  Simulation studies indicate that, for 

responses to complete tests, construction of Rasch measures from the observational data, followed 

by principal components factor analysis of Rasch residuals, provides an effective means of 

identifying multidimensionality.  The most diagnostically useful residual form was found to be the 

standardized residual.  The multidimensional structure of the Functional Independence Measure 

(FIM
SM

) is confirmed by means of Rasch analysis followed by factor analysis of standardized 

residuals. 
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INTRODUCTION 

 

The Rasch model constructs a one-dimensional measurement system from ordinal data, regardless 

of the dimensionality of those data.  Empirical data are always manifestations of more than one 

latent dimension.  For instance, in observational instruments, the observer's own training level and 

perspectives influence the observations recorded.  In self-administered tests, the ability of the 

subject to comprehend and follow instructions becomes part of the subject's self-assessment.  

Consequently the Rasch dimension is a composite based on the conjoint ordering of persons, items 

and other facets of measurement according to their raw scores (with allowance for incomplete data). 

 

When the data accord exactly with the Rasch model, then all systematic variation within the data is 

explained by the one dimension.  The removal of the implications of this dimension (for both 

persons and items) from the data leaves behind observation-level residuals with a random normal 

structure and predictable variance (Wright & Masters, 1982, p. 98).  Consequently, the residuals for 

pairs of items across persons are uncorrelated, a property known as "local independence" 

(Lazarsfeld, 1958).  Since Lazarsfeld introduced the term "local independence" in the context of 

latent class analysis, he conceptualized all relevant persons to be located at the same point on the 

variable.  In Rasch usage and in this paper, local independence is modeled to hold not just for the 

classes, i.e., at particular points along the variable, but at every point along the variable.  Thus local 

independence is modeled to hold not just at the class level, but for each person.  To verify local 

independence under Rasch model conditions, for which replication of observations is necessary, 

coincidence of person locations on the latent variable is achieved by removing the effect of different 

person measures from the observations (Andrich, 1991). 

 

In practice, however, it is impossible to discern, from the data alone, whether a particular residual is 

an accidental outcome of a process that accords with the Rasch model, or is produced by 
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unmodeled dimensions.  Indeed, all deviation in the data from the Rasch dimension could be 

considered symptoms of multidimensionality.  Is an unexpected correct answer on a test the one-in-

a-thousand occurrence predicted by the Rasch model, or is it a lucky guess?  Even a single random 

lucky guess on a certification test results in data that confounds a competence dimension with a 

guessing dimension, causing the Rasch dimension to be a composite of the two.  Since the 

certification information in the data overwhelms the guessing information, most users are content to 

label the test a "certification" test, and the Rasch dimension, a "certification" dimension. 

 

A few unusual responses slightly bias the measures toward the center of the test (Adams and 

Wright, 1994).  They also slightly reduce the statistical validity of the measures of the relevant 

persons and items (Wright and Stone, 1979, pp. 181-190).  When such observations are a cause for 

concern, they can be identified and diagnosed by examining the patterns of responses by the 

relevant persons or to the relevant items.  Since such detailed examination of all the data is 

unreasonable, it is useful to perform an initial screening of the data using person- and item-level 

quality control fit statistics, such as Outfit and Infit (Wright and Stone, 1979, pp. 66-82).  Gross 

non-normality of residuals would be detected at this stage. 

 

A pervasive, but usually less obvious, perturbation of the residuals is symptomatic of the presence 

of more than one dimension in the data.  Extra dimensions may reflect different person response 

styles or different item content areas.  Since, unidimensionality is always provisional, and 

ultimately utilitarian, the occurrence of multiple dimensions in the data does not necessarily imply 

substantive multi-dimensionality.  Certification tests contain both theory and practice aspects, but 

the data can express a unidimensional "competency" variable. 

 

Multidimensionality only becomes a real concern when there are response patterns in the data 

indicating that the data represent two or more dimensions so disparate that it is no longer clear what 

latent dimension the Rasch dimension operationalizes.  A data-set manifests one dimension so long 
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as it is productive to think of it that way.  For educational policy-makers, math is everything from 

addition to calculus.  For cognitive psychologists, the mental processes underlying addition may be 

very different from those underlying subtraction. 

 

In the extreme, every test item defines its own dimension.  For instance, a common one-item test is 

the question, "What is your age"?  In diagnostic testing, each response to each item may indicate a 

specific course of action.  Nevertheless, the inferential goal is to generalize across as many different 

items as possible that usefully manifest the same variable, such as "patient independence".  Utility 

is defeated, however, when different subsets of such items would lead to different generalizations.  

In this instance, utility dictates that what was considered to be the "same" variable is, in fact, two 

(or more) different variables, each leading to different inferences.  An example is the Functional 

Independence Measure, FIM
SM

.  Though originally intended to generalize one dimension of 

functional independence across a mixture of 18 motor and cognitive items, closer inspection 

indicated that it would generally be more useful to use the FIM items to construct separate "motor" 

and "cognitive" measures for each patient (Linacre et al., 1994). 

 

Multidimensionality can also be an artifact of test construction.  For instance, including the 

identical item several times in a certification test produces a subset of responses to those items that 

have high inter-correlation across persons.  These items define their own idiosyncratic local 

dimension based on that one item.  On the other hand, the use of different response mechanisms 

across items (multiple-choice, open-ended, rating scales) introduces unmodeled variation in the 

response-level data that can be attributed to a dimension of "item type" (Wilson and Wang, 1995). 

 

 Identifying Statistical Multi-Dimensionality 

Since the only multidimensionality of real measurement concern is manifested by unmodeled 

behavior in the data, it is that part of the data that must be examined.  After the construction of 

Rasch measures from the current data (or their imputation from previous data or by theory), an 
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expected value can be computed for each ordinal observation.  The observation residual is the 

observation less its expectation.  It is by looking for patterns among these residuals that relevant 

multidimensionality can be identified.  "Analysis of the fit of data to [local independence] is the 

statistical device by which data are evaluated for their measurement potential - for their 

measurement validity" (Wright 1995). 

 

Since there are many ways in which data can depart from the Rasch model (Glas and Verhelst, 

1995), it has been suggested that the most blatant departures be investigated first, followed by more 

subtle ones.  Using a comparative example, Linacre (1992) suggested a three stage procedure: (i) 

remediate systematic contradictions to the Rasch dimension, typically flagged by negative point-

biserial correlations; (ii) diagnose idiosyncratic persons and items using local quality-control fit 

statistics, such as INFIT and OUTFIT; (iii) look for multidimensionality. 

 

It is the residual inter-correlations across items that indicate whether subgroups of items cluster 

together in a non-homogeneous way, symptomatic of multidimensionality.  "The misfit of the 

Rasch model to a data set can be measured by the size of residual covariances.  Unfortunately, some 

computer programs for fitting the Rasch model do not give any information about this.  A choice 

would be to examine the covariance matrix of the item residuals, not the sizes of the residuals 

themselves, to see if the items are indeed conditionally uncorrelated, as required by the principle of 

local independence" (McDonald, 1985, p. 212). 

 

Conditionally correlated item residuals indicate the presence of other measurement dimensions, 

beyond the primary dimension.  This suggests a two-step process.  First, identify the other 

dimensions. Second, decide whether they are of sufficient interest to warrant the construction of 

separate measures for those dimensions.  This paper focuses on the first step, the identification of 

secondary dimensions.  In this endeavor, principal components factor analysis is used to detect 

structure in the inter-item residual correlation matrix. 
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The use of factor analysis to identify the primary dimension in data is discussed by Wright (1996) 

and Smith (1996).  In essence, factor analysis aids in the classification of items into potential 

dimensions, and assists with the partitioning of raw scores according to those dimensions.  It does 

not however, construct linear measures from the data along those dimensions.  Consequently, factor 

scores and loadings have an uncertain sample dependency and analyst-choice-dependent nature that 

renders their direct use in subsequent analyses precarious. 

 

 Choice of Residual Form for Item Correlations 

Consider a simple polytomous form of the Rasch model: 

 

wherePnik is the probability of being observed in ordered category k for person n on item i, where k 

ranges from 1 to m. 

Pni(k-1) is the probability of being observed in category k-1 for person n on item i, 

Bn is the ability of person n, 

Di is the difficulty of item i, and 

Fk is the step difficulty of category k relative to category k-1. 

 

Each data-point, Xni, is an observed category in the range 0 to m, resulting from an interaction 

between person n and item i.  Corresponding to each Xni is an expected score, Eni, given by 

with model variance of the observed outcome about the expected, Vni, where 
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This suggests a variety of residuals for investigation regarding inter-item correlation (see Table 1).  

The raw score residual, Yni, is the difference between the observed and expected category values 

and has the range -m to m.  Each standardized residual, Zni, is normalized by its local modeled 

standard deviation.  These standardized residuals are expected to approximate a N(0,1) distribution 

(Smith, 1988).  The logit residual, Lni, is a first approximation to the measurement discrepancy 

indicated by the raw score residual.  The modeled observation variance, Vni, is the raw-score-to-

logit conversion factor (Wright and Masters, 1982, p. 77).  The relationship between the three 

residuals can be complex, and depends on the shape of the item information function, defined by 

the rating scale structure.  For a two-category rating scale, i.e., for dichotomous observations, the 

relationship is shown in Figure 1. 

 

 [Table 1 about here] 

 

 [Figure 1 about here] 

 

The choice of which type of residual to employ in the investigation of multidimensionality is not 

clear cut.  A prima facie case could be made for each one of them.  Since Rasch analysis is a 

measurement-based approach, investigation of residuals from a measurement-based perspective 

would appear most productive.  This would focus on the logit residuals.  On the other hand, since 

unmodeled patterns in the residuals contradict the measurement framework, the standardized 

residuals may have more diagnostic power due to their clear statistical properties.  The raw score 

residuals, however, most directly reflect the presence of any other dimensions.  Indeed, these last 

most closely resemble the original raw observations which are widely used in the investigation of 

multidimensionality (Thurstone, 1932). 

 

 A Simulation Study for Two Dimensions 

In view of the uncertainty in the choice of residual with which to compute inter-item correlations, a 
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series of simulation studies was conducted.  The purpose of the studies was to discover which form 

of residual most clearly identified the multidimensional structure underlying the data in straight-

forward situations.  Principal components analysis, also called the principal-factor method, was 

chosen for this investigation because of its "rigorous mathematical basis" (Harman, 1960, p. 154).  

Substitution of common-factor methods in these simulation studies (not reported here) was found to 

lead to the same conclusions.  The simulation studies employ dichotomous items, but the utility of 

their result is illustrated with a polytomous empirical data set. 

 

For the first study, a sample of 1190 persons was generated.  Each person was assigned two 

orthogonal abilities: a "math" ability randomly from an N(0,1.5) logit distribution, and a "reading" 

ability randomly from a distribution with the same shape.  The two abilities were assigned 

independently, producing orthogonality.  A two-dimensional test was then posited containing 3 

types of dichotomous items: (i) 100 "math" items uniformly distributed in difficulty over -2 to +2 

logits; (ii) 25 "reading" items uniformly distributed over -2 to +2 logits; (iii) 50 "word problem" 

items (conceptually combine reading and math) uniformly distributed over -2 to +2 logits. 

 

Dichotomous observational data were generated for each person. For the math items, the math 

ability was used.  For the reading items, the reading ability was used.  For the word problem items, 

the lower of each person's math and reading abilities was used. 

 

Rasch analysis of this observational data was performed.  One measure was estimated for each 

person across all items and one difficulty for each item across all persons using the BIGSTEPS 

Rasch analysis program (Wright and Linacre, 1997).  Based on these estimated measures, expected 

observations were obtained and the three score residuals calculated. 

 

Because there are more math than reading items, the primary "Rasch" dimension is expected to be 

dominated by the math items.  The reading items should give the strongest indication of a second 
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dimension.  The word problems should cluster halfway between the math and reading items.  Smith 

and Miao (1994) reported that the ratio of 4 items on one dimension to 1 item on another generally 

produces a dimensional structure that can be identified directly by principal components analysis of 

the observations themselves.  Accordingly, this was done. 

 

 [Figure 2 about here] 

 

Figure 2 shows a plot of the loadings of the first principal component (unrotated) in the simulated 

data against the Rasch item difficulties estimated from that same data.  (Computations were 

performed by the author using proprietary software which had been validated against standard data 

sets).  The item difficulties fall mainly within their simulated range of -2 to +2 logits.  The 0.5 logit 

increase in the difficulty of the "W" items (word problems) relative to their generators is due to the 

choice of the lower of math and reading ability in generating the observations.  This choice has had 

the expected effect of making the estimated items appear more difficult than the generating items. 

 

The loadings on the first principal factor in the observations stratify the items by type: M for math 

items, W for word problems and R for reading items.  The math items show the highest loading on 

the first factor, the reading items the least, as expected.  The effect of item difficulty level is 

secondary, but the convex form of the "M" distribution indicates that extreme item easiness or 

difficulty attenuates the loading on the first factor.  The non-linearity of raw scores is distorting the 

factor structure.  Consequently, the vertical difference between the lowest M and highest W is 

small, meaning that the stratification, which is obvious in the plot, would be less striking in a table 

of factor loadings. 

 

 [Figure 3 about here] 

 

Figure 3 is based on the raw residuals.  The factor loadings for the first principal component in the 
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item residual correlations are plotted against item difficulties.  The first (Rasch) dimension has been 

explicitly removed.  The highest loadings on this second, residual, dimension are now obtained by 

the reading items.  (Since factor direction is arbitrary, the largest factor loading is shown as positive 

in this study).  The fact that the Rasch dimension is a compromise between the math and reading 

items is confirmed by the negative, rather than zero, loadings of the math items. 

 

The raw residuals produce a better stratified and less curved plot than the original observations.  

This could have been expected because the data were simulated to fit the Rasch model.  

Nevertheless, it is encouraging that introducing another orthogonal dimension into the data has not 

invalidated a Rasch-based dimensional structure. 

 

 [Figure 4 about here] 

 

Figure 4 is based on the standardized residuals. With these data, the differences between the 

standardized and raw residual plots are barely distinguishable by eye. 

 

 [Figure 5 about here] 

 

Figure 5 employs the logit residuals.  This plots shows attenuated loadings on the extreme items, 

clouding the nature of the dimensionality in the simulated data.  Nevertheless, this Figure remains 

clearer than that based on the observations themselves, Figure 2. 

 

These simulations of dichotomous observations suggest that none of these four approaches would 

be misleading, but that raw and standardized residuals give the clearest results. 

 

 Simulation Study: Correlated Dimensions 

A more subtle form of multidimensionality is that of correlated dimensions.  As a trainee advances 
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through a course of study, both knowledge of theory and practical skills tend to improve, but not 

exactly in step.  This can lead to the trainee having a "knowledge" ability and a "skill" ability.  

Across a sample of trainees at different stages of their training these abilities will be correlated, but 

different.  A test consisting of both knowledge and skill items will probe both abilities, and the 

reported trainee measure will be a composite of the two abilities.  Analysis of residuals can alert the 

analyst that this has occurred. 

 

In the second simulation, a sample of 1000 persons was generated.  Each person was assigned two 

abilities: an "X" ability randomly from an N(0,1) logit distribution, and a "O" ability randomly from 

a distribution with the same shape, but such that the X and O abilities have a 0.9 correlation across 

the sample.  Responses by this sample to a test of 50 X-type and 50 O-type items were simulated, 

such that each person is modeled to respond to each item type with the corresponding ability, e.g., 

responses to X items are with X abilities.  For each item type, the item difficulties were uniformly 

distributed from -2.0 to +2.0 logits. 

 

The inter-ability correlation of 0.9 was set high so that neither principal components factor analysis 

of the observations nor item-level OUTFIT statistics would be expected to detect the dimensional 

nature of the items successfully (Smith and Miao, 1994).  As a further complication, the mean 

ability of the sample was set at the center of the test, removing any skewing of the observation 

variance. 

 

 [Figure 6 about here] 

 

Principal components factor analysis of inter-item correlations was performed.  Figure 6 shows the 

loadings on the second factor for these simulated observations.  This factor is generally successful 

in discriminating X and O-type items.  The most displaced X and O items are indicated with 

arrows. 
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 [Figure 7 about here] 

 

Figure 7 shows the loadings on the first factor for the logit residuals.  This approach is less 

successful in discriminating X and O items.  In particular, the most displaced X item, at the bottom 

of the plot, is indicated to be more strongly O-type than nearly all O items. 

 

 [Figure 8 about here] 

 

Figure 8 shows the loadings on the first factor for the raw residuals.  This approach is more 

successful. Only one O item and one X item are noticeably displaced. 

 

 [Figure 9 about here] 

 

Figure 9 shows the loadings on the first factor for the standardized residuals.  This approach is the 

most successful.  Only one X item is noticeably displaced. 

 

In similar simulations, not reported here, but with lower inter-dimensional correlations and different 

sample-test targeting, this pattern continued.  The logit residuals were the least successful at 

discriminating X and O type items.  Factor analysis of the observations themselves was more 

successful in discriminating item types, but the raw and standardized residuals were most 

successful and about equally effective. 

 

 An Example Application 

 

In order to verify the effectiveness of principal components factor analysis of residuals, Rasch 

analysis was performed on a random sample of 6,144 FIM
SM

 records (from the UDS database, 
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courtesy of Carl V. Granger).  Only data collected at the admission time point were analyzed.  

Figure 10 plots the loadings of the first factor in the standardized residuals against the logit 

calibrations of the 18 FIM items.  This Figure immediately signals the divergence of the five 

cognitively-oriented items (top of the Figure) from the thirteen motor-oriented items.  This same 

divergence was reported in Linacre et al. (1994), but only after a tortuous analysis of admission and 

discharge data.  For these FIM data, the raw residual plot was almost identical to Figure 10, but 

with slightly less range to the loadings.  Both identify the opposite poles of the factor to be 

"memory" and "toilet transfer".  Analyses of the logit residuals and the original observations each 

generated a minor factor that corresponded to the cognitive-motor contrast, but with different 

orderings of the items at each end of the factor.  For the raw observations, the extremes are 

"comprehension" vs. "stairs".  For the logit residuals, "bathing" vs. "problem solving".  Thus, 

though the standardized residuals provided the distinct solution, the clinical implications of the 

factor structure might direct the analyst to favor use of a different residual for this analysis. 

 

 [Figure 10 about here] 

 

Once divergence within an item pool has been identified, the next step is to evaluate its impact on 

measurement. For the FIM, this is investigated by measuring the sample, first on the variable 

defined by the five cognitive items, then on that defined by the thirteen motor items.  When the 

differences between the resulting pairs of measures have clinical implications, e.g., when one 

measure indicates normal functioning and the other dysfunction, the multidimensionality of the 

original instrument is resolved by setting up two measurement systems.  This is the case for many 

applications of the FIM.  When differences between the pairs of measures have no implications for 

practice, then the multidimensionality is treated as an unwanted, but inevitable, source of the noise 

within the data, slightly lowering the quality of the one measurement system. 

 

 Conclusion 
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For complete tests, principal components factor analysis of either the observations themselves or 

the various residual formulations successfully reflects the multidimensional structures simulated 

here.  Though these simulated structures are more clear-cut than those hypothesized to exist in 

empirical data, the essential features are likely to encompass the same structures: items of varying 

dimensionality and persons with multiple, but correlated, abilities.  A word of caution: empirical 

data often incorporate departures from the Rasch model that would distort the distribution of the 

residuals, including miskeyed items, data entry errors and response sets.  It is recommended that 

these issues be addressed prior to factor analysis. 

 

Overall, standardized residuals provided the most decisive analysis, but their advantage over raw 

residuals was slight.  Logit residuals were less informative. 

 

Factor analysis of the observations themselves was also informative of the factor structure, but with 

the huge impediment that it does not construct linear measures for even one of its many factorial 

dimensions.  Further, it requires the analyst to determine which factor reflects the predominant 

measurement system, and which the multidimensionality.  Factor rotation or other factor methods 

may clarify this, but they can also confuse the factor structure further (Ferguson, 1941). 

 

In this study, Rasch analysis followed by factor analysis of residuals was always more effective at 

both constructing measures and identifying multidimensionality than direct factor analysis of the 

original response-level data. 
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Figure 1. Relationship between residuals to dichotomous observations. 
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Figure 2. Plot of first principal component of item observations against Rasch item 

difficulty calibrations. 
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Figure 3. Loadings on first principal component in raw residual correlations against 

Rasch item calibrations. 
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Figure 4. Loadings on first principal competent in standardized residual correlations 

against Rasch item calibrations. 
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Figure 5. Loadings on first principal component in logit residual correlations 

against Rasch item calibrations. 
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Figure 6. Loadings on the second factor for observations with the correlated 

multidimensional data. 
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Figure 7. Loadings on the first factor for logit residuals with the correlated 

multidimensional data. 
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Figure 8. Loadings on the first factor for raw residuals with the correlated 

multidimensional data. 
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Figure 9. Loadings on the first factor for standardized residuals with the correlated 

multidimensional data. 
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Figure 10. Loadings on the first factor for standardized residuals with the FIM data. 
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 Table 1 

 Observation Residuals 

Residual type Mathematical expression 

Raw score residual Yni = Xni - Eni 

Standardized residual Zni = (Xni - Eni)/√(Vni) 

Logit residual Lni = (Xni - Eni)/Vni 

 


