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Rasch Analysis of Rank-Ordered Data 
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Theoretical and practical aspects of several methods for the construction of linear measures from rank-or-
dered data are presented. The final partial-rankings of 356 professional golfers participating in 47 stroke-play 
tournaments are used for illustration. The methods include decomposing the rankings into independent paired 
comparisons without ties, into dependent paired comparisons without ties and into independent paired com-
parisons with ties. A further method, which is easier to implement, entails modeling each tournament as a 
partial-credit item in which the rank of each golfer is treated as the observation of a category on a partial- 
credit rating scale. For the golf data, the partial-credit method yields measures with greater face validity than 
the paired comparison methods. The methods are implemented with the computer programs Facets and Winsteps. 
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Rank-ordered data have characteristics that 
align well with the family of Rasch measurement 
models. Ranks are observations of elements im-
plying qualitatively more, ordered along an im-
plicit or explicit variable. A single set of ranks, 
called here a “ranking”, contains only enough in-
formation to order the elements. If there are two 
or more rankings of the same elements, then there 
may be enough information to construct interval 
measures of the distances between the elements. 
The interval measures support inferences about 
future performance, and also investigation into 
the consistency of particular rankings, or of the 
ranks of an element across rankings. 

In this paper, the rankings of golfers in the 47 
USPGA-accredited stroke-play golf tournaments 
of 2004 will be used illustratively.  Vijay Singh 
won the 46th Tournament, the Chrysler Classic, 
becoming the first-ever golfer to win $10 million 
in prize money in one year. A total of 680 golfers 
are listed as participating in those 47 tournaments. 
Of these, 17 golfers did not post a final score in at 
least one tournament. In addition, 306 players had 
a final score in only one tournament. These in-
cluded many international and veteran players, 
such as Tom Weiskopf. A further 52 players par-
ticipated in two tournaments, including Jack 
Nicklaus and Arnold Palmer. At the other extreme, 
one player participated in 36 tournaments, Esteban 
Toledo.  Vijay Singh played in 28 tournaments, 
Tiger Woods in 18. On average, 133 golfers par-
ticipated in each tournament. 

Paired Comparisons without Ties 

The simplest ranking comprises of two ele-
ments. This is a paired comparison.  In the ESPN 
World Ranking after the 45th Tournament, the top 
two players were Vijay Singh (VS) and Ernie Els 
(EE). These two golfers played in the same tour-
naments 13 times. In the first 12 of these tourna-
ments, VS was better ranked 6 times, and EE bet-
ter ranked six times. This would estimate the two 
players to have the same golfing ability.  In the 
13th tournament, VS ranked higher than EE. A ra-
tio-scale “odds” comparison of the abilities, bVS 
and bEE, of VS and EE would be bVS / bEE = 7/6, or 
in interval “log-odds” scaling, 

log (b  / b ) = BVS EE
= log(7/6) = 0.15 

VS – BEE (1) 

A general form of this, similar to models 
proposed by Bradley and Terry (1952) and Luce 
(1959), is: 

log (Pnm / Pmn) = Bn – Bm (2) 

where Pnm is the probability that element n ranks 
higher than element m. 

For estimation purposes this becomes: 
Bn – Bm = log (Pnm / Pmn) (3) 
≈ log (Tnm / Tmn ) 

where Tnm is the number of tournaments in 
which golfer n is ranked above golfer m and 
vice-versa. The standard error of the measure 
difference Bn – Bm is 

SE = ((Tnm + Tmn )/(Tmn*Tnm))½. (4) 

This model can be implemented directly in the 
Rasch software program Facets (Linacre, 2004a). 
When this is done, estimates are obtained more 
speedily and robustly when each data point is 
entered twice, once as Bn vs. Bm and again as Bm 
vs. Bn, then weighted 0.5. 

Implementing this model in other standard 
Rasch software is straightforward. The usual rect-
angular dataset format is that items are columns 
and persons are rows. In this golfing example, 
each tournament would be an item, and each 
player paired-comparison a row. The player with 
the higher ranking is scored “1”, and the other 
player “0”. Analysis of this data set will give the 
expected measure difference of 0.15 logits with 
software based on conditional maximum likeli-
hood estimation (CMLE), but will yield a mea-
sure difference of 0.30 = 2*0.15 for software 
based on joint maximum likelihood estimation 
(JMLE). This estimation bias was noted by 
Anderson (1973) and also its correction: divide 
measure difference by two. 

In the example, the SE of BVS – BEE is ((6+7)/ 
(6 * 7)) ½ = 0.56 logits. Under JMLE, 0.56 is re-
ported as the S.E. of each of BVS and BEE, so the 
joint SE of BVS – BEE is overestimated as 0.56 * 
2½. Accordingly, each JMLE element SE needs 
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to be divided by 2½. This is done routinely in 
Winsteps (Linacre, 2004b) when Paired = Yes is 
specified. 

Rank Orders as Multiple 
Independent Paired Comparisons 

Ernie Els (EE) and Bill Glasson (BG) both 
played in 16 tournaments, but never in the same 
tournament. How are they to be compared? They 
can be compared through their play against other 
players. Each ranking can be decomposed into a 
set of apparently independent paired compari-
sons, and these can be become the basis for con-
structing a measurement framework within which 
all the golfers can be measured. A convenient 
group of golfers are the 30 who took part in the 
first tournament of 2004, the Mercedes Champi-
onship. EE was one of these, but BG was not, so 
he is added to the analysis. From the participa-
tion of these 31 golfers in the 47 tournaments, 
5,220 paired comparisons of the 31 golfers can 
be constructed. Of these, 311 compared EE with 
other golfers, and 149 compared BG with another 
golfer. There are no comparisons of EE and BG. 
Only 4.5% of the 5,220 comparisons are ties. 
Application of (3) to the network of 4,929 paired 
comparisons without ties produces the finding 
that EE is estimated to be 1.15 logits more able 
than BG, and so EE is likely to be higher ranked 
than BG 3 times out of 4 were they to meet in a 
golf tournament under similar conditions. 

This analysis is fast and easy to conceptual-
ize, but has several drawbacks. First the ranking 
must be decomposed into paired comparisons. 

This may require some computer programming. 
A more fundamental problem is that paired com-
parisons within a ranking are not actually inde-
pendent as (1) or (3) imply, but are required to 
be self-consistent. 

Rank Orders as Multiple 
Dependent Paired Comparisons 

Consider the ranking of three golfers who 
played in the same three tournaments: Graeme 
McDowell, David Howell and Jean-Francois 
Remesy. They never tied. From the ranking of 
each tournament, we can construct three paired 
comparisons for these players. But they are not 
independent. From two of the comparisons built 
from a ranking we can often deduce the third 
comparison. 

Table 1 shows  the sample space for the in-
dependent paired comparisons of A, B and C 
(without ties). The probability of observing any 
particular ranking, e.g., A>B>C is 

P(RankingABC) = PABC / {PABC} (5) 

The likelihood of the set of N rankings of 
three objects is: 

{ }
1
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N
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with log-likelihood, canceling out the common 
divisor: 
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Table 1 
Probabilities of Rankings of 3 Objects as Paired Comparisons 

Self-consistent Relative Self-inconsistent Relative 
within ranking Probability within ranking Probability 
A>B B>C A>C PABC = PABPBCPAC 
A>C C>B A>B PACB = PACPCBPAB 
B>A A>C B>C PBAC = PBAPACPBC A>B B>C C>A PABPBCPCA 
B>C C>A B>A PBCA = PBCPCAPBA A>C C>B B>A PACPCBPBA 
C>A A>B C>B PCAB = PCAPABPCB 
C>B B>A C>A PCBA = PCBPBAPCA 

Only self-consistent: Sum = {PABC} 
normalizer 
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where y is A, B or C and Xyr is 2 for the highest 
element in ranking r, 1 for the middle element 
and 0 for the lowest element. This yields the maxi-
mum-likelihood equation: 

1 1

N Sum

yr ys s
r sy

d X N X P
dB
λ

= =

= −∑ ∑ (8) 

where Ps is the probability of observing ranking 
s, i.e., 
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Equation (8) yields the usual result that the 
maximum likelihood estimate corresponds to the 
point on the latent variable where the expected 
score equals the observed score. Then, for New-
ton-Raphson estimation, and standard error com-
putation: 

22
2

2
1 1

Sum Sum

ys s ys s
s sy

d N X P N X P
dB
λ

= =

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
∑ ∑ (10) 

For the three golfers, Graeme McDowell 
(GM), David Howell (DH) and Jean-Francois 
Remesy (JR), their observed rankings in the three 
tournaments were: JR>GM>DH, JR>DH>GM 
and DH>GM>JR. Regarding the paired compari-
sons as independent, their measures are JR = .47 
(SE = .87), DH = .00 (.84) and GM = –.47 (.87), 
so that their range is .94 logits, and the statistical 
distance between JR and GM is t = (.47 – –.47) / 
(.87²+.87²)½ = 0.76. 

Computing their pair-dependent measures, 
using Equations (8) and (10), yields JR = .35 (SE 
= .76), DH = .00 (.72) and GM = –.35 (.76). Thus 
modeling the dependency has made the measures 
more central (range = .70) and also made them 
more similar statistically, t = (.35 – –.35) / 
(.76²+.76²)½ = 0.65. 

The expressions in Table 1 and equations (5)- 
(10) generalize to rankings of any length. For 
partial rankings, the multiplier “N” is replaced 
by a summation over all possible rankings of the 
elements in each partial ranking (see Linacre, 

1994). As the rankings become longer, the pro-
portion of self-consistent pairings to independent 
pairings reduces. For three objects (Table 1), the 
ratio is 6:8 = 1:1.3. For four objects, 24:64 = 
1:2.7. For five objects, 120:1024 = 1:8.5. For 6 
objects, 720:32,768 = 1:45.5. For 7 objects, 5,040 
to 2,097,152 = 1:416.1. The number of terms in 
the normalizer (needed for computing expected 
scores) is the number of self-consistent pairings, 
so with three objects, this is 6, but with 13 ob-
jects, the number is 6,227,020,800, which is big-
ger than a standard computational “long integer”. 
Thus the burden of computing self-consistent 
pairings becomes overwhelming as the rankings 
become longer. 

The self-consistent-pairings approach was 
implemented in the computer program FRANK 
(Linacre, 1989). Linacre (1994) presents the analy-
sis of rankings of 7 Baseball Announcer using the 
self-consistent-pairs approach to rankings. The 
range of measures is given there as 1.85 logits: 
0.98 (.41) to –0.87 (.37). When the same dataset 
is analyzed using an independent–pairs approach 
(using the Facets program), the range of measures 
is 3.82 logits: 2.01 (.52) to –1.81 (.48). Figure 1 
shows the relationship of the two sets of measures. 
It is seen to be close to linear. 

Independent Paired 
Comparisons with Ties 

Returning to the golf tournaments, Nick Price 
(NP) played Colin Montgomerie (CM) in the 
WGC Match-Play Championship. What is the 
prediction? In the 47 stroke-play tournaments, 
NP ranked higher twice, and CM once, so NP’s 
measure is estimated as log (2/1) = 0.7 logits 
better than CM’s. But in a fourth tournament, they 
obtained the same ranking. 

Applying the logic of Andrich (1978), there 
emerges a “rating scale” paired-comparison 
model which allows for ties: 

log (Pnmj / Pnm(j–1)) = Bn – Bm – Fj (11) 

where the categories are j = 0,1, 2 for “ranked 
worse”, “tied”, “ranked better”. Fj is the Rasch- 
Andrich threshold, i.e., the point of equal probabil-
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ity on the latent variable, for categories j–1 and j. 
F0 is set to zero or any convenient value. This model 
can be implemented directly in Facets. 

Applying the paired-comparisons-with-ties 
model, the logit distance between BNP and BCM 
reduces from 0.7 logits to 0.34 logits. F1 and F2 
are +.34 and –.34. Inferring back from the model 
parameter estimates, 
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so that Pnm0 = e0/(e0+e.34–.34+e2*.34) = 0.25, Pnm1= 
e.34–.34/(e0+e.34–.34+e2*.34) = 0.25, Pnm2 = e2*.34/(e0+e.34– 
.34+e2*.34) = 0.5. This prediction matches the 
stroke-play data: NP is predicted to rank higher 
in 50% of their encounters, CM to rank higher in 
25%, and for them to tie in 25%.  In fact, in the 
WGC Match-Play Championship, they were tied 
at the end of the regulation 18 holes of play, but 
CM won on the 20th hole. 

Regarding rankings as independent paired 
comparisons, this model can be applied to the 
performances across all 47 tournaments of the 
30 players who played in the Mercedes Tourna-
ment. This yields 5,071 paired comparisons. Di-
rect analysis of these data with the model in (11) 

by Facets program yields a measure range of 1.42 
logits:  0.81 (.07) to –0.61 (.12).  Formatting the 
same data as a rectangular data set (paired per-
formances as rows, golfers as columns) and us-
ing JMLE estimation, produces a measure range 
of 2.88: 1.64 (.07) to –1.24 (.12). This supports 
the same “rectangular” JMLE estimation bias 
correction as applied to independent pairs with-
out ties. 

Dependent Paired 
Comparisons with Ties 

When ties are allowed, there are no longer 8 
possible combinations for 3 objects (as in Table 
1), but 27, and not merely 2 of them inconsistent, 
but 14. Consequently, in general, the computa-
tional load with ties is greater for dependent pair-
ings and the estimation bias less predictable for 
independent pairings. 

There were 12 tournaments in which Stuart 
Appleby (SA), Jonathan Kaye (JK) and Kirk Trip-
let (KT) all played. These produce 36 paired com-
parisons of the 3 players. 6 of these comparisons 
are ties. Scoring these comparisons, 2 when ranked 
higher, 1 when tied, and 0 when ranked lower, then 
SA scored 36, KT 24, and JK 12. When analyzed 
as independent paired comparisons using (9) in 
Facets, these produce a measure range of 0.96 
logits: 0.48 (.27) to –0.48 (.27). When analyzed 
as dependent pairs, the measure range is more cen-
tral: 0.67 logits: 0.34 (.23) to –0.34 (.23). 

Figure 1. Paired-Comparison Measures. 
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Long Rankings as Rating Scales 

The computational load for dependent paired 
comparisons grows exponentially as the number 
of objects in the rankings increases. For indepen-
dent paired comparisons, the proportion of in-
consistent pairings increases with increasing 
length of rankings. An attractive alternative ap-
proach is to treat rankings as rating scales. 

Imagine that each golf tournament is a sur-
vey item, and that each golfer is being assigned 
to a rating scale category according to his per-
formance. Then, if there are no ties, each rater is 
assigned to his own category, and the category 
number matches the golfer’s ranking in the tour-
nament. If there are ties, then two or more golf-
ers are assigned to the same category. Applying 
this approach to the threesome of SA, JK and 
KT, and ranking them 1, 2 or 3, they produce the 
measure range 2.32 logits: –1.16 (.48) to 1.16 
(.48). The increase in measure range relative to 
paired comparisons can be attributed in large part 
to the rating-scale approach being “rectangular”, 
i.e., modeling the golfers playing against the tour-
nament, rather than against each other. 

It might be thought that the three different 
measure ranges for the dependent-pairs, indepen-
dent-pairs, and rating-scale approaches would 
lead to different inferences, and they do in part. 
The parameter estimates for all three approaches 
recover the observed marginal scores. However, 
they do not report the same quality-control fit 
statistics, nor predict the same relative success 
in the future. A wider measure range for an ap-
proach implies that the approach perceives the 
data to be less stochastic, i.e., to have more of a 
Guttman pattern and be more predictable. If, ac-
cording to one approach, the data were perfectly 
predictable, then the measure range reported by 
that approach would be infinite. Thus, the wider 
the reported measure range, the more unexpected 
statistically are the irregular results, such as Stuart 
Appleby’s poor performance in the U.S. Open, 
and the more expected are the predicted results. 
This is because, for all three of these approaches, 

the standardized residuals are modeled to have a 
mean of zero and standard deviation of 1. 

Measures for 356 Golfers 
across 47 Tournaments 

Paired Comparisons 

Of the 357 golfers who played in two or more 
tournaments, one player, Arnold Palmer, scored 
worse in both his tournaments than any of the 
other 356 golfers. Thus his measure is not esti-
mable in the same way as the other golfers, and 
he is dropped from this analysis.  The rankings 
of the 356 multi-tournament golfers for the 47 
tournaments produce 391,374 paired compari-
sons. Of these, 16,639 are ties. Since, on aver-
age, 133 players participated in each Tournament, 
it is impractical to compute the measures based 
on dependent paired comparisons. 

Treating the paired comparisons as indepen-
dent, the measure range was 3.87 logits from Ti-
ger Woods (TW) at 1.57 logits (.04) and Vijay 
Singh (VS) at 1.39 logits (.03) down to Brad Hauer 
at (BH) –2.30 logits (.32). According to the con-
ventional Rasch-model parameter-level fit statis-
tics, Mike Baker Jr. (MB) was the most consistent 
in his performance across tournaments. He played 
in 2 tournaments, and was ranked 145 and 147. 
Tiger Woods was almost as consistent across his 
18 tournaments. Thongchai Jaidee was least con-
sistent. He played in 5 tournaments and was ranked 
32, 41, 80, 139 and 147. The golfers played most 
consistently in line with their overall performance 
at the Western Open. They played least consis-
tently at the WGC-NEC Invitational, where top 
players, Ernie Els and Padraig Harrington, ranked 
unexpectedly low at 65th and 73rd out of the 76 
players participating. Appendix A shows a Facets 
control file for this analysis. 

Analyzing the paired comparisons as a con-
ventional rectangular dataset with golfers as items 
and pairings as rows, the performance range is 7.75 
logits, twice the direct comparison range of 3.87 
logits, as expected. Again, Thongchai Jaidee is 
reported as least consistent and Mike Baker Jr. as 
most consistent. Appendix B shows a Winsteps 
control file for this analysis. 
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Measures for 356 Golfers 
across 47 Tournaments 

Rankings 

Another approach is to model each tourna-
ment as a performance item on which the golfer’s 
rank is the rating. Analytically, the 47 tournaments 
become 47 items. The worst rank at any tourna-
ment by one of multi-tournament players was 174 
at the Pebble Beach National Pro-Am, but this 
tournament included one-tournament-only play-
ers and also tied ranks. When this tournament is 
rescored so that the ranking includes only multi- 
tournament players and is strictly ordinal (with 
no unobserved intermediate rankings), the worst 
rank becomes 37. 

Each of the other 46 tournaments is rescored 
this same way. The “International” tournament 
has the most different levels of performance, 43. 
Accordingly, each tournament is modeled to de-
fine its own rating scale, i.e., to accord with a 
“partial credit” model (Masters, 1982). 

Appendix C shows the observed rankings for-
mulated for analysis by Winsteps. The analysis of 
these data produces results which match earlier 
findings. Tiger Woods is measured highest at .40 
logits (.07) and Brad Hauer lowest at –1.53 logits 
(1.05).  This measure range is 1.93 logits, about 
half of the 3.87 logit range of the independent 
paired comparisons, but this is somewhat mislead-
ing. Figure 2 shows that there is a sigmoid rela-
tionship between the two sets of measures. The 

paired comparisons show a large ability range be-
tween Brad Hauer (BH) and Mike Baker Jr. (MB). 
They played in only two tournaments each, but 
not in the same ones. In one tournament BH was 
equal last, otherwise they were close to last. In 
this instance, their small separation on the rank- 
order metric is more reasonable than is their large 
separation (almost half the ability range) on the 
paired-comparison metric. It appears that the 
paired-comparison measures are exaggerated at the 
extremes of the ability range. 

Mike Baker, Jr., is again reported as a most 
consistent golfer. The most inconsistent per-
former according to this approach is Tetsuji 
Hiratsuka. In his four tournaments he ranked 36, 
129, 131, and 133. In the paired-comparison ap-
proaches the golfer reported as most inconsis-
tent was Thongchai Jaidee, ranked 32, 41, 80, 
139 and 147. It is seen that the paired-compari-
son approach is more sensitive to misfitting per-
formance profiles, but the rank-order approach 
identifies aberrant individual performances as 
misfitting. From the tournament organizer’s view-
point, it seems prudent to treat Thongchai Jaidee 
is a golfer who performs roughly at an “80” level 
and to treat Tetsuji Hiratsuka as a golfer who 
generally performs at a “130” level, but has had 
one excellent performance, which he is unlikely 
to repeat. But, as things stand and disregarding 
misfit, Tetsuji Hiratsuka is reported to be a bet-
ter player than Thongchai Jaidee. 

Measures of Golfers
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Figure 2.  Independent Paired-Comparisons vs. Rank Orders 
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Conclusion 

Four approaches to the analysis of rank-or-
der data have been presented here. It has been 
demonstrated that the two independent-paired- 
comparison approaches, the direct and the rect-
angular, are equivalent with the application of a 
correction factor. 

The more rigorous dependent-paired-com-
parison approach is appealing, but is 
computationally impractical for long rankings. 
Figure 1 indicates that dependent-paired-com-
parison measures have a close-to-linear relation-
ship with independent-paired-comparison mea-
sures. 

The rank-order approach is implemented as a 
rectangular dataset and so has an inherent estima-
tion bias. Nevertheless, Figure 2 indicates that the 
measures it estimates are more plausible for long 
rankings than those produced by the independent- 
paired-comparison method, particularly in the tails. 
The misfit identified by this approach also appears 
to have more immediate practical relevance than 
that identified by paired comparisons. 
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Appendix A 
Facets control and data file for independent paired comparisons 

title = “47 Golf Tournaments” 
facets= 3 ; data set up with 3 facet-element locations 
entered=1,1,2 ;in data, facet one (golfer), facet one (golfer), facet two (tournament) 
model=?,-?,?,R2,0.5 ; which means: 

; any element in the first facet position (golfer) can be opposed by any element in the second 
facet position (golfer) in the context of the third facet position (tournament) with rating on 
a rating scale with highest category 2, and each observation weighted 0.5. 

noncentered=0 ; all facets are centered 
positive=0 ; all facets are negative: low score = high measure 
arrange=m,f ; report measures in measure order and fit order 
labels= 
1,golfers ; Facet one is 356 golfers 
 1, Benoit Beisser 
 2, Bill Britton 
 ...... 
 356, Tom Carter 
* 
2, Tournaments, A ; Facet two is 47 Tournaments 
 1, Mercedes Championships,0 ; Anchored at 0, used for fit reporting only. 
 2, Chrysler Classic of Tucson,0 
 ..... 
 47, Michelin Championship at Las Vegas,0 
* 
data= ; all data points entered twice, weighted 0.5; 
; first golfer, second golfer, tournament, comparison (0=ranked lower, 1=tied, 2=ranked higher) 
 94, 103, 1,2 ; golfer 94 paired with golfer 103 at tournament 1 was ranked higher 
 103, 94, 1,0 ; golfer 103 paired with golfer 94 at tournament 1 was ranked lower 
 94, 138, 1,2 
 138, 94, 1,0 
 ...... ; 782,748 data lines 
 353, 355, 45,2 
 355, 353, 45,0 
 354, 355, 45,0 
 355, 354, 45,2 
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Appendix B 

Winsteps control and data file for independent paired comparisons 

TITLE = “Golf 2004 Paired-comparison” 
ni =  356 ; Players are the columns 
xwide = 1 ; each observation one column wide 
item1 = 1 ; first player in column 1 
name1 = 357 ; tournament number and name starts in column 357 
CODES= 012 ; valid codes 
CLFILE=* ; descriptions of the codes 
0 = ranked lower 
1 = tied 
2 = ranks higher 
* 
Paired = Yes ; automatic estimation bias correction 
&end 
  1 Benoit Beisser 
  2 Bill Britton 
 ...... 
356 Tom Carter 
END LABELS 
; only two observations per line: one for each golfer in the pairing 
02                            01 Mercedes Championships 
0 2                           01 Mercedes Championships 
....... 
(382,182 data lines) 
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Appendix C 

Winsteps control and data file for ranked data 

TITLE = “Golf 2004 Ranked data” 
ni = 47 ; 47 tournaments 
xwide = 3 ; 3 columns per observation (1-254) 
item1 = 1 ; first tournament in columns 1-3 
name1 = 142 ; golfer identification 
Groups = 0 ; each tournament has its own rating scale (partial credit) 
Stkeep = No ; intermediate unobserved categories dropped out 

; these are due to ties and one-tournament golfers 
; next are all ranks from 1 to 254. Highest number observed was 174 
CODES=”  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 21 22 23+ 
 + 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47+ 
 + 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71+ 
 + 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95+ 
 + 96 97 98 99100101102103104105106107108109110111112113114115116117118119+ 
 +120121122123124125126127128129130131132133134135136137138139140141142143+ 
 +144145146147148149150151152153154155156157158159160161162163164165166167+ 
 +168169170171172173174175176177178179180181182183184185186187188189190191+ 
 +192193194195196197198199200201202203204205206207208209210211212213214215+ 
 +216217218219220221222223224225226227228229230231232233234235236237238239+ 
 +240241242243244245246247248249250251252253254" 
&end 
 1 Mercedes Championships 
 2 Chrysler Classic of Tucson 
.... ; 47 tournaments 
47 Michelin Championship at Las Vegas 
END LABELS 
; tournaments 
; 1  2  3  4  5  6  7  8  9 ...47 (141 data columns, then the golfers’ names) 
 21 34  9108116          34 .....J.L. Lewis 
 21       71 25       59    .....Fred Couples 
 24    41  5  4        1    .....Mike Weir 
 25  3   101 86 21    15  3 .....Rory Sabbatini 
.... 
(356 data lines) 


